Concepts of Complex Numbers
Complex Numbers and Quadratic Equation

117508 If \(z\) satisfies the equation \(|z|-z=1+2 i\), then \(z\) is equal to

1 \(\frac{3}{2}+2 \mathrm{i}\)
2 \(\frac{3}{2}-2 \mathrm{i}\)
3 \(2-\frac{3}{2} \mathrm{i}\)
4 \(2+\frac{3}{2} \mathrm{i}\)
Complex Numbers and Quadratic Equation

117509 The perimeter of the locus represented by arg \(\left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}\) is equal to

1 \(4 \pi\)
2 \(2 \pi \sqrt{2}\)
3 \(2 \pi \sqrt{3}\)
4 \(\frac{2 \pi}{\sqrt{3}}\)
Complex Numbers and Quadratic Equation

117510 If \(\cos \left(\log \mathrm{i}^{44}\right)=\mathbf{a}+\mathrm{ib}\), then

1 \(\mathrm{a}=1, \mathrm{~b}=-1\)
2 \(a=-1, b=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=0\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Complex Numbers and Quadratic Equation

117511 If \(\mathrm{z}\) is a complex number, then \((\mathrm{z}+5)(\overline{\mathrm{z}}+5)\) is equal to

1 \(|z+5 i|^2\)
2 \(|z-5|^2\)
3 \((z+5)^2\)
4 \(|z+5|^2\)
Complex Numbers and Quadratic Equation

117512 If \(z\) is a complex number, then which of the following statement is true?

1 ( \(z \bar{z})\) is purely imaginary
2 \((z \bar{z})\) is non-negative real
3 \((z-\bar{z})\) is purely real
4 \((z+\bar{z})\) is purely imaginary
Complex Numbers and Quadratic Equation

117508 If \(z\) satisfies the equation \(|z|-z=1+2 i\), then \(z\) is equal to

1 \(\frac{3}{2}+2 \mathrm{i}\)
2 \(\frac{3}{2}-2 \mathrm{i}\)
3 \(2-\frac{3}{2} \mathrm{i}\)
4 \(2+\frac{3}{2} \mathrm{i}\)
Complex Numbers and Quadratic Equation

117509 The perimeter of the locus represented by arg \(\left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}\) is equal to

1 \(4 \pi\)
2 \(2 \pi \sqrt{2}\)
3 \(2 \pi \sqrt{3}\)
4 \(\frac{2 \pi}{\sqrt{3}}\)
Complex Numbers and Quadratic Equation

117510 If \(\cos \left(\log \mathrm{i}^{44}\right)=\mathbf{a}+\mathrm{ib}\), then

1 \(\mathrm{a}=1, \mathrm{~b}=-1\)
2 \(a=-1, b=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=0\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Complex Numbers and Quadratic Equation

117511 If \(\mathrm{z}\) is a complex number, then \((\mathrm{z}+5)(\overline{\mathrm{z}}+5)\) is equal to

1 \(|z+5 i|^2\)
2 \(|z-5|^2\)
3 \((z+5)^2\)
4 \(|z+5|^2\)
Complex Numbers and Quadratic Equation

117512 If \(z\) is a complex number, then which of the following statement is true?

1 ( \(z \bar{z})\) is purely imaginary
2 \((z \bar{z})\) is non-negative real
3 \((z-\bar{z})\) is purely real
4 \((z+\bar{z})\) is purely imaginary
Complex Numbers and Quadratic Equation

117508 If \(z\) satisfies the equation \(|z|-z=1+2 i\), then \(z\) is equal to

1 \(\frac{3}{2}+2 \mathrm{i}\)
2 \(\frac{3}{2}-2 \mathrm{i}\)
3 \(2-\frac{3}{2} \mathrm{i}\)
4 \(2+\frac{3}{2} \mathrm{i}\)
Complex Numbers and Quadratic Equation

117509 The perimeter of the locus represented by arg \(\left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}\) is equal to

1 \(4 \pi\)
2 \(2 \pi \sqrt{2}\)
3 \(2 \pi \sqrt{3}\)
4 \(\frac{2 \pi}{\sqrt{3}}\)
Complex Numbers and Quadratic Equation

117510 If \(\cos \left(\log \mathrm{i}^{44}\right)=\mathbf{a}+\mathrm{ib}\), then

1 \(\mathrm{a}=1, \mathrm{~b}=-1\)
2 \(a=-1, b=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=0\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Complex Numbers and Quadratic Equation

117511 If \(\mathrm{z}\) is a complex number, then \((\mathrm{z}+5)(\overline{\mathrm{z}}+5)\) is equal to

1 \(|z+5 i|^2\)
2 \(|z-5|^2\)
3 \((z+5)^2\)
4 \(|z+5|^2\)
Complex Numbers and Quadratic Equation

117512 If \(z\) is a complex number, then which of the following statement is true?

1 ( \(z \bar{z})\) is purely imaginary
2 \((z \bar{z})\) is non-negative real
3 \((z-\bar{z})\) is purely real
4 \((z+\bar{z})\) is purely imaginary
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117508 If \(z\) satisfies the equation \(|z|-z=1+2 i\), then \(z\) is equal to

1 \(\frac{3}{2}+2 \mathrm{i}\)
2 \(\frac{3}{2}-2 \mathrm{i}\)
3 \(2-\frac{3}{2} \mathrm{i}\)
4 \(2+\frac{3}{2} \mathrm{i}\)
Complex Numbers and Quadratic Equation

117509 The perimeter of the locus represented by arg \(\left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}\) is equal to

1 \(4 \pi\)
2 \(2 \pi \sqrt{2}\)
3 \(2 \pi \sqrt{3}\)
4 \(\frac{2 \pi}{\sqrt{3}}\)
Complex Numbers and Quadratic Equation

117510 If \(\cos \left(\log \mathrm{i}^{44}\right)=\mathbf{a}+\mathrm{ib}\), then

1 \(\mathrm{a}=1, \mathrm{~b}=-1\)
2 \(a=-1, b=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=0\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Complex Numbers and Quadratic Equation

117511 If \(\mathrm{z}\) is a complex number, then \((\mathrm{z}+5)(\overline{\mathrm{z}}+5)\) is equal to

1 \(|z+5 i|^2\)
2 \(|z-5|^2\)
3 \((z+5)^2\)
4 \(|z+5|^2\)
Complex Numbers and Quadratic Equation

117512 If \(z\) is a complex number, then which of the following statement is true?

1 ( \(z \bar{z})\) is purely imaginary
2 \((z \bar{z})\) is non-negative real
3 \((z-\bar{z})\) is purely real
4 \((z+\bar{z})\) is purely imaginary
Complex Numbers and Quadratic Equation

117508 If \(z\) satisfies the equation \(|z|-z=1+2 i\), then \(z\) is equal to

1 \(\frac{3}{2}+2 \mathrm{i}\)
2 \(\frac{3}{2}-2 \mathrm{i}\)
3 \(2-\frac{3}{2} \mathrm{i}\)
4 \(2+\frac{3}{2} \mathrm{i}\)
Complex Numbers and Quadratic Equation

117509 The perimeter of the locus represented by arg \(\left(\frac{z+i}{z-i}\right)=\frac{\pi}{4}\) is equal to

1 \(4 \pi\)
2 \(2 \pi \sqrt{2}\)
3 \(2 \pi \sqrt{3}\)
4 \(\frac{2 \pi}{\sqrt{3}}\)
Complex Numbers and Quadratic Equation

117510 If \(\cos \left(\log \mathrm{i}^{44}\right)=\mathbf{a}+\mathrm{ib}\), then

1 \(\mathrm{a}=1, \mathrm{~b}=-1\)
2 \(a=-1, b=1\)
3 \(\mathrm{a}=1, \mathrm{~b}=0\)
4 \(\mathrm{a}=1, \mathrm{~b}=2\)
Complex Numbers and Quadratic Equation

117511 If \(\mathrm{z}\) is a complex number, then \((\mathrm{z}+5)(\overline{\mathrm{z}}+5)\) is equal to

1 \(|z+5 i|^2\)
2 \(|z-5|^2\)
3 \((z+5)^2\)
4 \(|z+5|^2\)
Complex Numbers and Quadratic Equation

117512 If \(z\) is a complex number, then which of the following statement is true?

1 ( \(z \bar{z})\) is purely imaginary
2 \((z \bar{z})\) is non-negative real
3 \((z-\bar{z})\) is purely real
4 \((z+\bar{z})\) is purely imaginary