Pendulum (Simple Pendulum and Compound Pendulum)
Oscillations

140574 Two pendulum oscillate with a constant phase difference of $45^{\circ}$ and same amplitude. If the maximum velocity of one of them is $v$ and that of other is $v+x$, then the value of $x$ will be

1 0
2 $\frac{\mathrm{V}}{2}$
3 $\frac{\mathrm{V}}{\sqrt{2}}$
4 $(\sqrt{2}) \mathrm{v}$
Oscillations

140576 The period of oscillation of a simple pendulum of length $l$ suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination $\alpha$, is given by

1 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \cos \alpha}}$
2 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \sin \alpha}}$
3 $2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
4 $2 \pi \sqrt{\frac{l}{g \tan \alpha}}$
Oscillations

140578 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $T_{2}$. Amplitude of oscillations in both the cases is small. The, $T_{1} / T_{2}$ is

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140579 The angular amplitude of simple pendulum is $\boldsymbol{\theta}_{0}$. The maximum tension in its string will be

1 $\operatorname{mg}\left(1-\theta_{0}\right)$
2 $\operatorname{mg}\left(1+\theta_{0}\right)$
3 $\operatorname{mg}\left(1-\theta_{0}^{2}\right)$
4 $\operatorname{mg}\left(1+\theta_{0}^{2}\right)$
Oscillations

140574 Two pendulum oscillate with a constant phase difference of $45^{\circ}$ and same amplitude. If the maximum velocity of one of them is $v$ and that of other is $v+x$, then the value of $x$ will be

1 0
2 $\frac{\mathrm{V}}{2}$
3 $\frac{\mathrm{V}}{\sqrt{2}}$
4 $(\sqrt{2}) \mathrm{v}$
Oscillations

140576 The period of oscillation of a simple pendulum of length $l$ suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination $\alpha$, is given by

1 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \cos \alpha}}$
2 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \sin \alpha}}$
3 $2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
4 $2 \pi \sqrt{\frac{l}{g \tan \alpha}}$
Oscillations

140578 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $T_{2}$. Amplitude of oscillations in both the cases is small. The, $T_{1} / T_{2}$ is

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140579 The angular amplitude of simple pendulum is $\boldsymbol{\theta}_{0}$. The maximum tension in its string will be

1 $\operatorname{mg}\left(1-\theta_{0}\right)$
2 $\operatorname{mg}\left(1+\theta_{0}\right)$
3 $\operatorname{mg}\left(1-\theta_{0}^{2}\right)$
4 $\operatorname{mg}\left(1+\theta_{0}^{2}\right)$
Oscillations

140574 Two pendulum oscillate with a constant phase difference of $45^{\circ}$ and same amplitude. If the maximum velocity of one of them is $v$ and that of other is $v+x$, then the value of $x$ will be

1 0
2 $\frac{\mathrm{V}}{2}$
3 $\frac{\mathrm{V}}{\sqrt{2}}$
4 $(\sqrt{2}) \mathrm{v}$
Oscillations

140576 The period of oscillation of a simple pendulum of length $l$ suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination $\alpha$, is given by

1 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \cos \alpha}}$
2 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \sin \alpha}}$
3 $2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
4 $2 \pi \sqrt{\frac{l}{g \tan \alpha}}$
Oscillations

140578 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $T_{2}$. Amplitude of oscillations in both the cases is small. The, $T_{1} / T_{2}$ is

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140579 The angular amplitude of simple pendulum is $\boldsymbol{\theta}_{0}$. The maximum tension in its string will be

1 $\operatorname{mg}\left(1-\theta_{0}\right)$
2 $\operatorname{mg}\left(1+\theta_{0}\right)$
3 $\operatorname{mg}\left(1-\theta_{0}^{2}\right)$
4 $\operatorname{mg}\left(1+\theta_{0}^{2}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

140574 Two pendulum oscillate with a constant phase difference of $45^{\circ}$ and same amplitude. If the maximum velocity of one of them is $v$ and that of other is $v+x$, then the value of $x$ will be

1 0
2 $\frac{\mathrm{V}}{2}$
3 $\frac{\mathrm{V}}{\sqrt{2}}$
4 $(\sqrt{2}) \mathrm{v}$
Oscillations

140576 The period of oscillation of a simple pendulum of length $l$ suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination $\alpha$, is given by

1 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \cos \alpha}}$
2 $2 \pi \sqrt{\frac{l}{\mathrm{~g} \sin \alpha}}$
3 $2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$
4 $2 \pi \sqrt{\frac{l}{g \tan \alpha}}$
Oscillations

140578 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $T_{2}$. Amplitude of oscillations in both the cases is small. The, $T_{1} / T_{2}$ is

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140579 The angular amplitude of simple pendulum is $\boldsymbol{\theta}_{0}$. The maximum tension in its string will be

1 $\operatorname{mg}\left(1-\theta_{0}\right)$
2 $\operatorname{mg}\left(1+\theta_{0}\right)$
3 $\operatorname{mg}\left(1-\theta_{0}^{2}\right)$
4 $\operatorname{mg}\left(1+\theta_{0}^{2}\right)$