Pendulum (Simple Pendulum and Compound Pendulum)
Oscillations

140554 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $\mathbf{T}_{2}$. Amplitude of oscillations in both the cases is small. Then $\mathbf{T}_{1} / \mathbf{T}_{2}$ is-

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140555 Two springs of spring constant $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are stretched with the same force. They will have potential energy in ratio-

1 $1: 2$
2 $2: 1$
3 $1: 4$
4 $4: 1$
Oscillations

140556 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of $10 \mathrm{~cm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $2.2 \mathrm{~m} / \mathrm{s}$
2 $1.8 \mathrm{~m} / \mathrm{s}$
3 $1.4 \mathrm{~m} / \mathrm{s}$
4 $0.6 \mathrm{~m} / \mathrm{s}$
Oscillations

140557 When a spring is stretched by a distance $x$, it exerts a force given by
$F=\left(-5 x-16 x^{3}\right) N$
The work done, when the spring is stretched from $0.1 \mathrm{~m}$ to $0.2 \mathrm{~m}$ is :

1 $8.7 \times 10^{-2} \mathrm{~J}$
2 $12.2 \times 10^{-2} \mathrm{~J}$
3 $8.1 \times 10^{-1} \mathrm{~J}$
4 $12.2 \times 10^{-1} \mathrm{~J}$
Oscillations

140558 The length of a simple pendulum is about $100 \mathrm{~cm}$ known to an accuracy of $1 \mathrm{~mm}$. Its period of oscillation is $2 \mathrm{~s}$ determined by measuring the time for 100 oscillations using a clock of $0.1 \mathrm{~s}$ resolution. What is the accuracy in the determined value of $\mathbf{g}$ ?

1 $0.2 \%$
2 $0.5 \%$
3 $0.1 \%$
4 $2 \%$
Oscillations

140554 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $\mathbf{T}_{2}$. Amplitude of oscillations in both the cases is small. Then $\mathbf{T}_{1} / \mathbf{T}_{2}$ is-

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140555 Two springs of spring constant $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are stretched with the same force. They will have potential energy in ratio-

1 $1: 2$
2 $2: 1$
3 $1: 4$
4 $4: 1$
Oscillations

140556 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of $10 \mathrm{~cm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $2.2 \mathrm{~m} / \mathrm{s}$
2 $1.8 \mathrm{~m} / \mathrm{s}$
3 $1.4 \mathrm{~m} / \mathrm{s}$
4 $0.6 \mathrm{~m} / \mathrm{s}$
Oscillations

140557 When a spring is stretched by a distance $x$, it exerts a force given by
$F=\left(-5 x-16 x^{3}\right) N$
The work done, when the spring is stretched from $0.1 \mathrm{~m}$ to $0.2 \mathrm{~m}$ is :

1 $8.7 \times 10^{-2} \mathrm{~J}$
2 $12.2 \times 10^{-2} \mathrm{~J}$
3 $8.1 \times 10^{-1} \mathrm{~J}$
4 $12.2 \times 10^{-1} \mathrm{~J}$
Oscillations

140558 The length of a simple pendulum is about $100 \mathrm{~cm}$ known to an accuracy of $1 \mathrm{~mm}$. Its period of oscillation is $2 \mathrm{~s}$ determined by measuring the time for 100 oscillations using a clock of $0.1 \mathrm{~s}$ resolution. What is the accuracy in the determined value of $\mathbf{g}$ ?

1 $0.2 \%$
2 $0.5 \%$
3 $0.1 \%$
4 $2 \%$
Oscillations

140554 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $\mathbf{T}_{2}$. Amplitude of oscillations in both the cases is small. Then $\mathbf{T}_{1} / \mathbf{T}_{2}$ is-

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140555 Two springs of spring constant $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are stretched with the same force. They will have potential energy in ratio-

1 $1: 2$
2 $2: 1$
3 $1: 4$
4 $4: 1$
Oscillations

140556 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of $10 \mathrm{~cm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $2.2 \mathrm{~m} / \mathrm{s}$
2 $1.8 \mathrm{~m} / \mathrm{s}$
3 $1.4 \mathrm{~m} / \mathrm{s}$
4 $0.6 \mathrm{~m} / \mathrm{s}$
Oscillations

140557 When a spring is stretched by a distance $x$, it exerts a force given by
$F=\left(-5 x-16 x^{3}\right) N$
The work done, when the spring is stretched from $0.1 \mathrm{~m}$ to $0.2 \mathrm{~m}$ is :

1 $8.7 \times 10^{-2} \mathrm{~J}$
2 $12.2 \times 10^{-2} \mathrm{~J}$
3 $8.1 \times 10^{-1} \mathrm{~J}$
4 $12.2 \times 10^{-1} \mathrm{~J}$
Oscillations

140558 The length of a simple pendulum is about $100 \mathrm{~cm}$ known to an accuracy of $1 \mathrm{~mm}$. Its period of oscillation is $2 \mathrm{~s}$ determined by measuring the time for 100 oscillations using a clock of $0.1 \mathrm{~s}$ resolution. What is the accuracy in the determined value of $\mathbf{g}$ ?

1 $0.2 \%$
2 $0.5 \%$
3 $0.1 \%$
4 $2 \%$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

140554 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $\mathbf{T}_{2}$. Amplitude of oscillations in both the cases is small. Then $\mathbf{T}_{1} / \mathbf{T}_{2}$ is-

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140555 Two springs of spring constant $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are stretched with the same force. They will have potential energy in ratio-

1 $1: 2$
2 $2: 1$
3 $1: 4$
4 $4: 1$
Oscillations

140556 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of $10 \mathrm{~cm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $2.2 \mathrm{~m} / \mathrm{s}$
2 $1.8 \mathrm{~m} / \mathrm{s}$
3 $1.4 \mathrm{~m} / \mathrm{s}$
4 $0.6 \mathrm{~m} / \mathrm{s}$
Oscillations

140557 When a spring is stretched by a distance $x$, it exerts a force given by
$F=\left(-5 x-16 x^{3}\right) N$
The work done, when the spring is stretched from $0.1 \mathrm{~m}$ to $0.2 \mathrm{~m}$ is :

1 $8.7 \times 10^{-2} \mathrm{~J}$
2 $12.2 \times 10^{-2} \mathrm{~J}$
3 $8.1 \times 10^{-1} \mathrm{~J}$
4 $12.2 \times 10^{-1} \mathrm{~J}$
Oscillations

140558 The length of a simple pendulum is about $100 \mathrm{~cm}$ known to an accuracy of $1 \mathrm{~mm}$. Its period of oscillation is $2 \mathrm{~s}$ determined by measuring the time for 100 oscillations using a clock of $0.1 \mathrm{~s}$ resolution. What is the accuracy in the determined value of $\mathbf{g}$ ?

1 $0.2 \%$
2 $0.5 \%$
3 $0.1 \%$
4 $2 \%$
Oscillations

140554 Time period of a simple pendulum of length $l$ is $T_{1}$ and time period of a uniform rod of the same length $l$ pivoted about one end and oscillating in a vertical plane is $\mathbf{T}_{2}$. Amplitude of oscillations in both the cases is small. Then $\mathbf{T}_{1} / \mathbf{T}_{2}$ is-

1 $\frac{1}{\sqrt{3}}$
2 1
3 $\sqrt{\frac{4}{3}}$
4 $\sqrt{\frac{3}{2}}$
Oscillations

140555 Two springs of spring constant $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are stretched with the same force. They will have potential energy in ratio-

1 $1: 2$
2 $2: 1$
3 $1: 4$
4 $4: 1$
Oscillations

140556 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to vertical height of $10 \mathrm{~cm} ?\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $2.2 \mathrm{~m} / \mathrm{s}$
2 $1.8 \mathrm{~m} / \mathrm{s}$
3 $1.4 \mathrm{~m} / \mathrm{s}$
4 $0.6 \mathrm{~m} / \mathrm{s}$
Oscillations

140557 When a spring is stretched by a distance $x$, it exerts a force given by
$F=\left(-5 x-16 x^{3}\right) N$
The work done, when the spring is stretched from $0.1 \mathrm{~m}$ to $0.2 \mathrm{~m}$ is :

1 $8.7 \times 10^{-2} \mathrm{~J}$
2 $12.2 \times 10^{-2} \mathrm{~J}$
3 $8.1 \times 10^{-1} \mathrm{~J}$
4 $12.2 \times 10^{-1} \mathrm{~J}$
Oscillations

140558 The length of a simple pendulum is about $100 \mathrm{~cm}$ known to an accuracy of $1 \mathrm{~mm}$. Its period of oscillation is $2 \mathrm{~s}$ determined by measuring the time for 100 oscillations using a clock of $0.1 \mathrm{~s}$ resolution. What is the accuracy in the determined value of $\mathbf{g}$ ?

1 $0.2 \%$
2 $0.5 \%$
3 $0.1 \%$
4 $2 \%$