Energy of Oscillation
Oscillations

140376 A spring with force constant $k$ is initially stretched by $x_{1}$. If it is further stretched by $x_{2}$, then the increase in its potential energy is

1 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}$
2 $\frac{1}{2} \mathrm{kx}_{2}\left(\mathrm{x}_{2}+2 \mathrm{x}_{1}\right)$
3 $\frac{1}{2} \mathrm{kx}_{1}^{2}+\frac{1}{2} \mathrm{kx}_{2}^{2}$
4 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)^{2}$
5 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)$
Oscillations

140378 Two identical pendulums are oscillating with amplitudes $4 \mathrm{~cm}$ and $8 \mathrm{~cm}$. The ratio of their energies of oscillation will be

1 $1 / 3$
2 $1 / 4$
3 $1 / 9$
4 $1 / 2$
Oscillations

140381 A body executes SHM. At a displacement $x$, its potential energy is $E_{1}$. At a displacement $y$, its potential energy is $\mathbf{E}_{2}$. What is the potential energy of the body at a displacement $(x+y)$ ?

1 $\sqrt{\mathrm{E}_{1}}+\sqrt{\mathrm{E}_{2}}$
2 $\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{\mathrm{E}_{1} \cdot \mathrm{E}_{2}}$
3 $\sqrt{\mathrm{E}_{1}^{2}}+\sqrt{\mathrm{E}_{2}^{2}}$
4 $\sqrt{\mathrm{E}_{1} \mathrm{E}_{2}}$
Oscillations

140382 $U$ is the $P E$ of an oscillating particle and $F$ is the force acting on it at a given instant. Which of the following is true?

1 $\frac{U}{F}+x=0$
2 $\frac{2 \mathrm{U}}{\mathrm{F}}+\mathrm{x}=0$
3 $\frac{F}{U}+x=0$
4 $\frac{F}{2 U}+x=0$
Oscillations

140376 A spring with force constant $k$ is initially stretched by $x_{1}$. If it is further stretched by $x_{2}$, then the increase in its potential energy is

1 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}$
2 $\frac{1}{2} \mathrm{kx}_{2}\left(\mathrm{x}_{2}+2 \mathrm{x}_{1}\right)$
3 $\frac{1}{2} \mathrm{kx}_{1}^{2}+\frac{1}{2} \mathrm{kx}_{2}^{2}$
4 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)^{2}$
5 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)$
Oscillations

140378 Two identical pendulums are oscillating with amplitudes $4 \mathrm{~cm}$ and $8 \mathrm{~cm}$. The ratio of their energies of oscillation will be

1 $1 / 3$
2 $1 / 4$
3 $1 / 9$
4 $1 / 2$
Oscillations

140381 A body executes SHM. At a displacement $x$, its potential energy is $E_{1}$. At a displacement $y$, its potential energy is $\mathbf{E}_{2}$. What is the potential energy of the body at a displacement $(x+y)$ ?

1 $\sqrt{\mathrm{E}_{1}}+\sqrt{\mathrm{E}_{2}}$
2 $\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{\mathrm{E}_{1} \cdot \mathrm{E}_{2}}$
3 $\sqrt{\mathrm{E}_{1}^{2}}+\sqrt{\mathrm{E}_{2}^{2}}$
4 $\sqrt{\mathrm{E}_{1} \mathrm{E}_{2}}$
Oscillations

140382 $U$ is the $P E$ of an oscillating particle and $F$ is the force acting on it at a given instant. Which of the following is true?

1 $\frac{U}{F}+x=0$
2 $\frac{2 \mathrm{U}}{\mathrm{F}}+\mathrm{x}=0$
3 $\frac{F}{U}+x=0$
4 $\frac{F}{2 U}+x=0$
Oscillations

140376 A spring with force constant $k$ is initially stretched by $x_{1}$. If it is further stretched by $x_{2}$, then the increase in its potential energy is

1 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}$
2 $\frac{1}{2} \mathrm{kx}_{2}\left(\mathrm{x}_{2}+2 \mathrm{x}_{1}\right)$
3 $\frac{1}{2} \mathrm{kx}_{1}^{2}+\frac{1}{2} \mathrm{kx}_{2}^{2}$
4 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)^{2}$
5 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)$
Oscillations

140378 Two identical pendulums are oscillating with amplitudes $4 \mathrm{~cm}$ and $8 \mathrm{~cm}$. The ratio of their energies of oscillation will be

1 $1 / 3$
2 $1 / 4$
3 $1 / 9$
4 $1 / 2$
Oscillations

140381 A body executes SHM. At a displacement $x$, its potential energy is $E_{1}$. At a displacement $y$, its potential energy is $\mathbf{E}_{2}$. What is the potential energy of the body at a displacement $(x+y)$ ?

1 $\sqrt{\mathrm{E}_{1}}+\sqrt{\mathrm{E}_{2}}$
2 $\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{\mathrm{E}_{1} \cdot \mathrm{E}_{2}}$
3 $\sqrt{\mathrm{E}_{1}^{2}}+\sqrt{\mathrm{E}_{2}^{2}}$
4 $\sqrt{\mathrm{E}_{1} \mathrm{E}_{2}}$
Oscillations

140382 $U$ is the $P E$ of an oscillating particle and $F$ is the force acting on it at a given instant. Which of the following is true?

1 $\frac{U}{F}+x=0$
2 $\frac{2 \mathrm{U}}{\mathrm{F}}+\mathrm{x}=0$
3 $\frac{F}{U}+x=0$
4 $\frac{F}{2 U}+x=0$
Oscillations

140376 A spring with force constant $k$ is initially stretched by $x_{1}$. If it is further stretched by $x_{2}$, then the increase in its potential energy is

1 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}$
2 $\frac{1}{2} \mathrm{kx}_{2}\left(\mathrm{x}_{2}+2 \mathrm{x}_{1}\right)$
3 $\frac{1}{2} \mathrm{kx}_{1}^{2}+\frac{1}{2} \mathrm{kx}_{2}^{2}$
4 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)^{2}$
5 $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right)$
Oscillations

140378 Two identical pendulums are oscillating with amplitudes $4 \mathrm{~cm}$ and $8 \mathrm{~cm}$. The ratio of their energies of oscillation will be

1 $1 / 3$
2 $1 / 4$
3 $1 / 9$
4 $1 / 2$
Oscillations

140381 A body executes SHM. At a displacement $x$, its potential energy is $E_{1}$. At a displacement $y$, its potential energy is $\mathbf{E}_{2}$. What is the potential energy of the body at a displacement $(x+y)$ ?

1 $\sqrt{\mathrm{E}_{1}}+\sqrt{\mathrm{E}_{2}}$
2 $\mathrm{E}_{1}+\mathrm{E}_{2}+2 \sqrt{\mathrm{E}_{1} \cdot \mathrm{E}_{2}}$
3 $\sqrt{\mathrm{E}_{1}^{2}}+\sqrt{\mathrm{E}_{2}^{2}}$
4 $\sqrt{\mathrm{E}_{1} \mathrm{E}_{2}}$
Oscillations

140382 $U$ is the $P E$ of an oscillating particle and $F$ is the force acting on it at a given instant. Which of the following is true?

1 $\frac{U}{F}+x=0$
2 $\frac{2 \mathrm{U}}{\mathrm{F}}+\mathrm{x}=0$
3 $\frac{F}{U}+x=0$
4 $\frac{F}{2 U}+x=0$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here