Energy of Oscillation
Oscillations

140389 A particle starting from mean position performs linear S.H.M. Its amplitude is ' $A$ ' and total energy is ' $E$ '. At what displacement its kinetic energy is $3 \mathrm{E} / 4$ ?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{3}$
3 $\frac{\mathrm{A}}{2}$
4 $\mathrm{A}$
Oscillations

140390 A body oscillates simple harmonically with a period of 2 second, starting from the origin. After what time will its kinetic energy be $\mathbf{7 5 \%}$ of the total energy.
$\left(\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$

1 $\frac{1}{6} \mathrm{~s}$
2 $\frac{1}{3} \mathrm{~s}$
3 $\frac{1}{12} \mathrm{~s}$
4 $\frac{1}{4} \mathrm{~s}$
Oscillations

140391 The potential energy of a simple harmonic oscillator, when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
(where, $\mathrm{E}$ is total energy)
Oscillations

140392 A particle is vibrating in a simple harmonic motion with an amplitude $4 \mathrm{~cm}$. At what displacement from the equilibrium is its energy half potential and half kinetic ?

1 $2 \sqrt{2} \mathrm{~cm}$
2 $\sqrt{2} \mathrm{~cm}$
3 $3 \mathrm{~cm}$
4 $1 \mathrm{~cm}$
Oscillations

140389 A particle starting from mean position performs linear S.H.M. Its amplitude is ' $A$ ' and total energy is ' $E$ '. At what displacement its kinetic energy is $3 \mathrm{E} / 4$ ?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{3}$
3 $\frac{\mathrm{A}}{2}$
4 $\mathrm{A}$
Oscillations

140390 A body oscillates simple harmonically with a period of 2 second, starting from the origin. After what time will its kinetic energy be $\mathbf{7 5 \%}$ of the total energy.
$\left(\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$

1 $\frac{1}{6} \mathrm{~s}$
2 $\frac{1}{3} \mathrm{~s}$
3 $\frac{1}{12} \mathrm{~s}$
4 $\frac{1}{4} \mathrm{~s}$
Oscillations

140391 The potential energy of a simple harmonic oscillator, when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
(where, $\mathrm{E}$ is total energy)
Oscillations

140392 A particle is vibrating in a simple harmonic motion with an amplitude $4 \mathrm{~cm}$. At what displacement from the equilibrium is its energy half potential and half kinetic ?

1 $2 \sqrt{2} \mathrm{~cm}$
2 $\sqrt{2} \mathrm{~cm}$
3 $3 \mathrm{~cm}$
4 $1 \mathrm{~cm}$
Oscillations

140389 A particle starting from mean position performs linear S.H.M. Its amplitude is ' $A$ ' and total energy is ' $E$ '. At what displacement its kinetic energy is $3 \mathrm{E} / 4$ ?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{3}$
3 $\frac{\mathrm{A}}{2}$
4 $\mathrm{A}$
Oscillations

140390 A body oscillates simple harmonically with a period of 2 second, starting from the origin. After what time will its kinetic energy be $\mathbf{7 5 \%}$ of the total energy.
$\left(\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$

1 $\frac{1}{6} \mathrm{~s}$
2 $\frac{1}{3} \mathrm{~s}$
3 $\frac{1}{12} \mathrm{~s}$
4 $\frac{1}{4} \mathrm{~s}$
Oscillations

140391 The potential energy of a simple harmonic oscillator, when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
(where, $\mathrm{E}$ is total energy)
Oscillations

140392 A particle is vibrating in a simple harmonic motion with an amplitude $4 \mathrm{~cm}$. At what displacement from the equilibrium is its energy half potential and half kinetic ?

1 $2 \sqrt{2} \mathrm{~cm}$
2 $\sqrt{2} \mathrm{~cm}$
3 $3 \mathrm{~cm}$
4 $1 \mathrm{~cm}$
Oscillations

140389 A particle starting from mean position performs linear S.H.M. Its amplitude is ' $A$ ' and total energy is ' $E$ '. At what displacement its kinetic energy is $3 \mathrm{E} / 4$ ?

1 $\frac{\mathrm{A}}{4}$
2 $\frac{\mathrm{A}}{3}$
3 $\frac{\mathrm{A}}{2}$
4 $\mathrm{A}$
Oscillations

140390 A body oscillates simple harmonically with a period of 2 second, starting from the origin. After what time will its kinetic energy be $\mathbf{7 5 \%}$ of the total energy.
$\left(\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$

1 $\frac{1}{6} \mathrm{~s}$
2 $\frac{1}{3} \mathrm{~s}$
3 $\frac{1}{12} \mathrm{~s}$
4 $\frac{1}{4} \mathrm{~s}$
Oscillations

140391 The potential energy of a simple harmonic oscillator, when the particle is half way to its end point is

1 $\frac{1}{4} \mathrm{E}$
2 $\frac{1}{2} \mathrm{E}$
3 $\frac{2}{3} \mathrm{E}$
4 $\frac{1}{8} \mathrm{E}$
(where, $\mathrm{E}$ is total energy)
Oscillations

140392 A particle is vibrating in a simple harmonic motion with an amplitude $4 \mathrm{~cm}$. At what displacement from the equilibrium is its energy half potential and half kinetic ?

1 $2 \sqrt{2} \mathrm{~cm}$
2 $\sqrt{2} \mathrm{~cm}$
3 $3 \mathrm{~cm}$
4 $1 \mathrm{~cm}$