Energy of Oscillation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

140393 A particle of mass $4 \mathrm{~kg}$ is executing S.H.M . Its displacement is given by the equation $Y=8 \cos$ $[100 \mathrm{t}+\pi / 4] \mathrm{cm}$. Its maximum kinetic energy is

1 $128 \mathrm{~J}$
2 $64 \mathrm{~J}$
3 $16 \mathrm{~J}$
4 $32 \mathrm{~J}$
Oscillations

140394 An object of mass $0.2 \mathrm{~kg}$ executes SHM along $x$-axis with frequency of $\frac{25}{\pi}$ Hz. At the position $x=0.04 \mathrm{~m}$, the object has kinetic energy of $0.5 \mathrm{~J}$ and potential energy of $0.4 \mathrm{~J}$. The amplitude of oscillation is

1 $0.05 \mathrm{~m}$
2 $0.06 \mathrm{~m}$
3 $0.01 \mathrm{~m}$
4 None of these
Oscillations

140395 The total energy of a body executing simple harmonic motion is $\mathbf{E}$. The kinetic energy when the displacement is $1 / 3$ of the amplitude

1 $\frac{\sqrt{3}}{8} \mathrm{E}$
2 $\frac{8}{\sqrt{3}} \mathrm{E}$
3 $\frac{8}{9} \mathrm{E}$
4 $\frac{3}{8} \mathrm{E}$
Oscillations

140397 The ratio between kinetic and potential energies of a body executing simple harmonic motion, when it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is

1 $\mathrm{N}^{2}+1$
2 $\frac{1}{\mathrm{~N}^{2}}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{2}-1$
Oscillations

140393 A particle of mass $4 \mathrm{~kg}$ is executing S.H.M . Its displacement is given by the equation $Y=8 \cos$ $[100 \mathrm{t}+\pi / 4] \mathrm{cm}$. Its maximum kinetic energy is

1 $128 \mathrm{~J}$
2 $64 \mathrm{~J}$
3 $16 \mathrm{~J}$
4 $32 \mathrm{~J}$
Oscillations

140394 An object of mass $0.2 \mathrm{~kg}$ executes SHM along $x$-axis with frequency of $\frac{25}{\pi}$ Hz. At the position $x=0.04 \mathrm{~m}$, the object has kinetic energy of $0.5 \mathrm{~J}$ and potential energy of $0.4 \mathrm{~J}$. The amplitude of oscillation is

1 $0.05 \mathrm{~m}$
2 $0.06 \mathrm{~m}$
3 $0.01 \mathrm{~m}$
4 None of these
Oscillations

140395 The total energy of a body executing simple harmonic motion is $\mathbf{E}$. The kinetic energy when the displacement is $1 / 3$ of the amplitude

1 $\frac{\sqrt{3}}{8} \mathrm{E}$
2 $\frac{8}{\sqrt{3}} \mathrm{E}$
3 $\frac{8}{9} \mathrm{E}$
4 $\frac{3}{8} \mathrm{E}$
Oscillations

140397 The ratio between kinetic and potential energies of a body executing simple harmonic motion, when it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is

1 $\mathrm{N}^{2}+1$
2 $\frac{1}{\mathrm{~N}^{2}}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{2}-1$
Oscillations

140393 A particle of mass $4 \mathrm{~kg}$ is executing S.H.M . Its displacement is given by the equation $Y=8 \cos$ $[100 \mathrm{t}+\pi / 4] \mathrm{cm}$. Its maximum kinetic energy is

1 $128 \mathrm{~J}$
2 $64 \mathrm{~J}$
3 $16 \mathrm{~J}$
4 $32 \mathrm{~J}$
Oscillations

140394 An object of mass $0.2 \mathrm{~kg}$ executes SHM along $x$-axis with frequency of $\frac{25}{\pi}$ Hz. At the position $x=0.04 \mathrm{~m}$, the object has kinetic energy of $0.5 \mathrm{~J}$ and potential energy of $0.4 \mathrm{~J}$. The amplitude of oscillation is

1 $0.05 \mathrm{~m}$
2 $0.06 \mathrm{~m}$
3 $0.01 \mathrm{~m}$
4 None of these
Oscillations

140395 The total energy of a body executing simple harmonic motion is $\mathbf{E}$. The kinetic energy when the displacement is $1 / 3$ of the amplitude

1 $\frac{\sqrt{3}}{8} \mathrm{E}$
2 $\frac{8}{\sqrt{3}} \mathrm{E}$
3 $\frac{8}{9} \mathrm{E}$
4 $\frac{3}{8} \mathrm{E}$
Oscillations

140397 The ratio between kinetic and potential energies of a body executing simple harmonic motion, when it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is

1 $\mathrm{N}^{2}+1$
2 $\frac{1}{\mathrm{~N}^{2}}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{2}-1$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Oscillations

140393 A particle of mass $4 \mathrm{~kg}$ is executing S.H.M . Its displacement is given by the equation $Y=8 \cos$ $[100 \mathrm{t}+\pi / 4] \mathrm{cm}$. Its maximum kinetic energy is

1 $128 \mathrm{~J}$
2 $64 \mathrm{~J}$
3 $16 \mathrm{~J}$
4 $32 \mathrm{~J}$
Oscillations

140394 An object of mass $0.2 \mathrm{~kg}$ executes SHM along $x$-axis with frequency of $\frac{25}{\pi}$ Hz. At the position $x=0.04 \mathrm{~m}$, the object has kinetic energy of $0.5 \mathrm{~J}$ and potential energy of $0.4 \mathrm{~J}$. The amplitude of oscillation is

1 $0.05 \mathrm{~m}$
2 $0.06 \mathrm{~m}$
3 $0.01 \mathrm{~m}$
4 None of these
Oscillations

140395 The total energy of a body executing simple harmonic motion is $\mathbf{E}$. The kinetic energy when the displacement is $1 / 3$ of the amplitude

1 $\frac{\sqrt{3}}{8} \mathrm{E}$
2 $\frac{8}{\sqrt{3}} \mathrm{E}$
3 $\frac{8}{9} \mathrm{E}$
4 $\frac{3}{8} \mathrm{E}$
Oscillations

140397 The ratio between kinetic and potential energies of a body executing simple harmonic motion, when it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is

1 $\mathrm{N}^{2}+1$
2 $\frac{1}{\mathrm{~N}^{2}}$
3 $\mathrm{N}^{2}$
4 $\mathrm{N}^{2}-1$