Differentiation of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80319 If \(y=e^{\operatorname{msin}^{-1} x}\) and \(\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=A y^{2}\), then \(A=\)

1 \(\mathrm{m}\)
2 \(-\mathrm{m}\)
3 \(\mathrm{m}^{2}\)
4 \(-m^{2}\)
Limits, Continuity and Differentiability

80320 If \(\log _{10}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2\), then \(\frac{d y}{d x}=\).

1 \(-\frac{99 x}{101 y}\)
2 \(\frac{99 x}{101 y}\)
3 \(-\frac{99 y}{101 x}\)
4 \(\frac{99 y}{101 x}\)
Limits, Continuity and Differentiability

80321 If \(g(x)\) is the inverse function of \(f(x)\) and \(f^{\prime}(x)=\frac{1}{1+x^{4}}\), then \(g^{\prime}(x)\) is

1 \(1+[\mathrm{g}(\mathrm{x})]^{4}\)
2 \(1-[\mathrm{g}(\mathrm{x})]^{4}\)
3 \(1+[\mathrm{f}(\mathrm{x})]^{4}\)
4 \(\frac{1}{1+[g(x)]^{4}}\)
Limits, Continuity and Differentiability

80322 If \(x=f(t)\) and \(y=g(t)\) are differentiable functions of \(t\), then \(\frac{d^{2} y}{d x^{2}}\) is

1 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
2 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{2}}\)
3 \(\frac{g^{\prime}(t) \cdot f^{\prime \prime}(t)-f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
4 \(\frac{g^{\prime}(g) \cdot f^{\prime \prime}(t)+f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
Limits, Continuity and Differentiability

80319 If \(y=e^{\operatorname{msin}^{-1} x}\) and \(\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=A y^{2}\), then \(A=\)

1 \(\mathrm{m}\)
2 \(-\mathrm{m}\)
3 \(\mathrm{m}^{2}\)
4 \(-m^{2}\)
Limits, Continuity and Differentiability

80320 If \(\log _{10}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2\), then \(\frac{d y}{d x}=\).

1 \(-\frac{99 x}{101 y}\)
2 \(\frac{99 x}{101 y}\)
3 \(-\frac{99 y}{101 x}\)
4 \(\frac{99 y}{101 x}\)
Limits, Continuity and Differentiability

80321 If \(g(x)\) is the inverse function of \(f(x)\) and \(f^{\prime}(x)=\frac{1}{1+x^{4}}\), then \(g^{\prime}(x)\) is

1 \(1+[\mathrm{g}(\mathrm{x})]^{4}\)
2 \(1-[\mathrm{g}(\mathrm{x})]^{4}\)
3 \(1+[\mathrm{f}(\mathrm{x})]^{4}\)
4 \(\frac{1}{1+[g(x)]^{4}}\)
Limits, Continuity and Differentiability

80322 If \(x=f(t)\) and \(y=g(t)\) are differentiable functions of \(t\), then \(\frac{d^{2} y}{d x^{2}}\) is

1 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
2 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{2}}\)
3 \(\frac{g^{\prime}(t) \cdot f^{\prime \prime}(t)-f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
4 \(\frac{g^{\prime}(g) \cdot f^{\prime \prime}(t)+f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
Limits, Continuity and Differentiability

80319 If \(y=e^{\operatorname{msin}^{-1} x}\) and \(\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=A y^{2}\), then \(A=\)

1 \(\mathrm{m}\)
2 \(-\mathrm{m}\)
3 \(\mathrm{m}^{2}\)
4 \(-m^{2}\)
Limits, Continuity and Differentiability

80320 If \(\log _{10}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2\), then \(\frac{d y}{d x}=\).

1 \(-\frac{99 x}{101 y}\)
2 \(\frac{99 x}{101 y}\)
3 \(-\frac{99 y}{101 x}\)
4 \(\frac{99 y}{101 x}\)
Limits, Continuity and Differentiability

80321 If \(g(x)\) is the inverse function of \(f(x)\) and \(f^{\prime}(x)=\frac{1}{1+x^{4}}\), then \(g^{\prime}(x)\) is

1 \(1+[\mathrm{g}(\mathrm{x})]^{4}\)
2 \(1-[\mathrm{g}(\mathrm{x})]^{4}\)
3 \(1+[\mathrm{f}(\mathrm{x})]^{4}\)
4 \(\frac{1}{1+[g(x)]^{4}}\)
Limits, Continuity and Differentiability

80322 If \(x=f(t)\) and \(y=g(t)\) are differentiable functions of \(t\), then \(\frac{d^{2} y}{d x^{2}}\) is

1 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
2 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{2}}\)
3 \(\frac{g^{\prime}(t) \cdot f^{\prime \prime}(t)-f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
4 \(\frac{g^{\prime}(g) \cdot f^{\prime \prime}(t)+f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80319 If \(y=e^{\operatorname{msin}^{-1} x}\) and \(\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=A y^{2}\), then \(A=\)

1 \(\mathrm{m}\)
2 \(-\mathrm{m}\)
3 \(\mathrm{m}^{2}\)
4 \(-m^{2}\)
Limits, Continuity and Differentiability

80320 If \(\log _{10}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=2\), then \(\frac{d y}{d x}=\).

1 \(-\frac{99 x}{101 y}\)
2 \(\frac{99 x}{101 y}\)
3 \(-\frac{99 y}{101 x}\)
4 \(\frac{99 y}{101 x}\)
Limits, Continuity and Differentiability

80321 If \(g(x)\) is the inverse function of \(f(x)\) and \(f^{\prime}(x)=\frac{1}{1+x^{4}}\), then \(g^{\prime}(x)\) is

1 \(1+[\mathrm{g}(\mathrm{x})]^{4}\)
2 \(1-[\mathrm{g}(\mathrm{x})]^{4}\)
3 \(1+[\mathrm{f}(\mathrm{x})]^{4}\)
4 \(\frac{1}{1+[g(x)]^{4}}\)
Limits, Continuity and Differentiability

80322 If \(x=f(t)\) and \(y=g(t)\) are differentiable functions of \(t\), then \(\frac{d^{2} y}{d x^{2}}\) is

1 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
2 \(\frac{f^{\prime}(t) \cdot g^{\prime \prime}(t)-g^{\prime}(t) \cdot f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{2}}\)
3 \(\frac{g^{\prime}(t) \cdot f^{\prime \prime}(t)-f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)
4 \(\frac{g^{\prime}(g) \cdot f^{\prime \prime}(t)+f^{\prime}(t) \cdot g^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}\)