Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80228 Suppose that \(f(x)\) is a differentiable function such that \(f^{\prime}(x)\) is continuous, \(f^{\prime}(0)=1\) and \(f^{\prime \prime}(0)\) does not exist. Let \(\mathbf{g}(\mathbf{x})=\mathbf{x} \mathbf{f}^{\prime}(\mathbf{x})\), Then,

1 \(g^{\prime}(0)\) does not exist
2 \(\mathrm{g}^{\prime}(0)=0\)
3 \(\mathrm{g}^{\prime}(0)=1\)
4 \(\mathrm{g}^{\prime}(0)=2\)
Limits, Continuity and Differentiability

80229 Let \(\boldsymbol{f}(\mathrm{x})\) be a differentiable function and \(\boldsymbol{f}^{\prime}(4)=\) 5. Then \(\lim _{\mathrm{x} \rightarrow 2} \frac{f(4)-f\left(\mathrm{x}^{2}\right)}{\mathrm{x}-2}\) equals

1 0
2 5
3 20
4 -20
Limits, Continuity and Differentiability

80230 The function \(f(x)=\operatorname{asin}|x|+b e^{|x|}\) is differentiable at \(x=0\) when

1 \(3 \mathrm{a}+\mathrm{b}=0\)
2 \(3 \mathrm{a}-\mathrm{b}=0\)
3 \(\mathrm{a}+\mathrm{b}=0\)
4 \(\mathrm{a}-\mathrm{b}=0\)
Limits, Continuity and Differentiability

80231 Let ' \(f\) ' be a twice differentiable function such that \(f^{\prime \prime}(x)=-f(x)\) and \(f^{\prime}(x)=g(x)=g(x)\). If \(h(x)\) \(=\{f(x)\}^{2}+\{g(x)\}^{2}\) and \(h(5)=11\), then \(h(10)=-\)

1 22
2 11
3 1
4 2
Limits, Continuity and Differentiability

80232 Let \(f\) be differentiable for all \(x\). If \(f(1)=-2\) and \(f^{\prime}(\mathbf{x}) \geq \mathbf{2}\) for \(x \in[\mathbf{1}, \mathbf{6}]\), then

1 \(f(6)=5\)
2 \(\mathrm{f}(6)\lt 6\)
3 \(\mathrm{f}(6)\lt 8\)
4 \(f(6) \geq 8\)
Limits, Continuity and Differentiability

80228 Suppose that \(f(x)\) is a differentiable function such that \(f^{\prime}(x)\) is continuous, \(f^{\prime}(0)=1\) and \(f^{\prime \prime}(0)\) does not exist. Let \(\mathbf{g}(\mathbf{x})=\mathbf{x} \mathbf{f}^{\prime}(\mathbf{x})\), Then,

1 \(g^{\prime}(0)\) does not exist
2 \(\mathrm{g}^{\prime}(0)=0\)
3 \(\mathrm{g}^{\prime}(0)=1\)
4 \(\mathrm{g}^{\prime}(0)=2\)
Limits, Continuity and Differentiability

80229 Let \(\boldsymbol{f}(\mathrm{x})\) be a differentiable function and \(\boldsymbol{f}^{\prime}(4)=\) 5. Then \(\lim _{\mathrm{x} \rightarrow 2} \frac{f(4)-f\left(\mathrm{x}^{2}\right)}{\mathrm{x}-2}\) equals

1 0
2 5
3 20
4 -20
Limits, Continuity and Differentiability

80230 The function \(f(x)=\operatorname{asin}|x|+b e^{|x|}\) is differentiable at \(x=0\) when

1 \(3 \mathrm{a}+\mathrm{b}=0\)
2 \(3 \mathrm{a}-\mathrm{b}=0\)
3 \(\mathrm{a}+\mathrm{b}=0\)
4 \(\mathrm{a}-\mathrm{b}=0\)
Limits, Continuity and Differentiability

80231 Let ' \(f\) ' be a twice differentiable function such that \(f^{\prime \prime}(x)=-f(x)\) and \(f^{\prime}(x)=g(x)=g(x)\). If \(h(x)\) \(=\{f(x)\}^{2}+\{g(x)\}^{2}\) and \(h(5)=11\), then \(h(10)=-\)

1 22
2 11
3 1
4 2
Limits, Continuity and Differentiability

80232 Let \(f\) be differentiable for all \(x\). If \(f(1)=-2\) and \(f^{\prime}(\mathbf{x}) \geq \mathbf{2}\) for \(x \in[\mathbf{1}, \mathbf{6}]\), then

1 \(f(6)=5\)
2 \(\mathrm{f}(6)\lt 6\)
3 \(\mathrm{f}(6)\lt 8\)
4 \(f(6) \geq 8\)
Limits, Continuity and Differentiability

80228 Suppose that \(f(x)\) is a differentiable function such that \(f^{\prime}(x)\) is continuous, \(f^{\prime}(0)=1\) and \(f^{\prime \prime}(0)\) does not exist. Let \(\mathbf{g}(\mathbf{x})=\mathbf{x} \mathbf{f}^{\prime}(\mathbf{x})\), Then,

1 \(g^{\prime}(0)\) does not exist
2 \(\mathrm{g}^{\prime}(0)=0\)
3 \(\mathrm{g}^{\prime}(0)=1\)
4 \(\mathrm{g}^{\prime}(0)=2\)
Limits, Continuity and Differentiability

80229 Let \(\boldsymbol{f}(\mathrm{x})\) be a differentiable function and \(\boldsymbol{f}^{\prime}(4)=\) 5. Then \(\lim _{\mathrm{x} \rightarrow 2} \frac{f(4)-f\left(\mathrm{x}^{2}\right)}{\mathrm{x}-2}\) equals

1 0
2 5
3 20
4 -20
Limits, Continuity and Differentiability

80230 The function \(f(x)=\operatorname{asin}|x|+b e^{|x|}\) is differentiable at \(x=0\) when

1 \(3 \mathrm{a}+\mathrm{b}=0\)
2 \(3 \mathrm{a}-\mathrm{b}=0\)
3 \(\mathrm{a}+\mathrm{b}=0\)
4 \(\mathrm{a}-\mathrm{b}=0\)
Limits, Continuity and Differentiability

80231 Let ' \(f\) ' be a twice differentiable function such that \(f^{\prime \prime}(x)=-f(x)\) and \(f^{\prime}(x)=g(x)=g(x)\). If \(h(x)\) \(=\{f(x)\}^{2}+\{g(x)\}^{2}\) and \(h(5)=11\), then \(h(10)=-\)

1 22
2 11
3 1
4 2
Limits, Continuity and Differentiability

80232 Let \(f\) be differentiable for all \(x\). If \(f(1)=-2\) and \(f^{\prime}(\mathbf{x}) \geq \mathbf{2}\) for \(x \in[\mathbf{1}, \mathbf{6}]\), then

1 \(f(6)=5\)
2 \(\mathrm{f}(6)\lt 6\)
3 \(\mathrm{f}(6)\lt 8\)
4 \(f(6) \geq 8\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80228 Suppose that \(f(x)\) is a differentiable function such that \(f^{\prime}(x)\) is continuous, \(f^{\prime}(0)=1\) and \(f^{\prime \prime}(0)\) does not exist. Let \(\mathbf{g}(\mathbf{x})=\mathbf{x} \mathbf{f}^{\prime}(\mathbf{x})\), Then,

1 \(g^{\prime}(0)\) does not exist
2 \(\mathrm{g}^{\prime}(0)=0\)
3 \(\mathrm{g}^{\prime}(0)=1\)
4 \(\mathrm{g}^{\prime}(0)=2\)
Limits, Continuity and Differentiability

80229 Let \(\boldsymbol{f}(\mathrm{x})\) be a differentiable function and \(\boldsymbol{f}^{\prime}(4)=\) 5. Then \(\lim _{\mathrm{x} \rightarrow 2} \frac{f(4)-f\left(\mathrm{x}^{2}\right)}{\mathrm{x}-2}\) equals

1 0
2 5
3 20
4 -20
Limits, Continuity and Differentiability

80230 The function \(f(x)=\operatorname{asin}|x|+b e^{|x|}\) is differentiable at \(x=0\) when

1 \(3 \mathrm{a}+\mathrm{b}=0\)
2 \(3 \mathrm{a}-\mathrm{b}=0\)
3 \(\mathrm{a}+\mathrm{b}=0\)
4 \(\mathrm{a}-\mathrm{b}=0\)
Limits, Continuity and Differentiability

80231 Let ' \(f\) ' be a twice differentiable function such that \(f^{\prime \prime}(x)=-f(x)\) and \(f^{\prime}(x)=g(x)=g(x)\). If \(h(x)\) \(=\{f(x)\}^{2}+\{g(x)\}^{2}\) and \(h(5)=11\), then \(h(10)=-\)

1 22
2 11
3 1
4 2
Limits, Continuity and Differentiability

80232 Let \(f\) be differentiable for all \(x\). If \(f(1)=-2\) and \(f^{\prime}(\mathbf{x}) \geq \mathbf{2}\) for \(x \in[\mathbf{1}, \mathbf{6}]\), then

1 \(f(6)=5\)
2 \(\mathrm{f}(6)\lt 6\)
3 \(\mathrm{f}(6)\lt 8\)
4 \(f(6) \geq 8\)
Limits, Continuity and Differentiability

80228 Suppose that \(f(x)\) is a differentiable function such that \(f^{\prime}(x)\) is continuous, \(f^{\prime}(0)=1\) and \(f^{\prime \prime}(0)\) does not exist. Let \(\mathbf{g}(\mathbf{x})=\mathbf{x} \mathbf{f}^{\prime}(\mathbf{x})\), Then,

1 \(g^{\prime}(0)\) does not exist
2 \(\mathrm{g}^{\prime}(0)=0\)
3 \(\mathrm{g}^{\prime}(0)=1\)
4 \(\mathrm{g}^{\prime}(0)=2\)
Limits, Continuity and Differentiability

80229 Let \(\boldsymbol{f}(\mathrm{x})\) be a differentiable function and \(\boldsymbol{f}^{\prime}(4)=\) 5. Then \(\lim _{\mathrm{x} \rightarrow 2} \frac{f(4)-f\left(\mathrm{x}^{2}\right)}{\mathrm{x}-2}\) equals

1 0
2 5
3 20
4 -20
Limits, Continuity and Differentiability

80230 The function \(f(x)=\operatorname{asin}|x|+b e^{|x|}\) is differentiable at \(x=0\) when

1 \(3 \mathrm{a}+\mathrm{b}=0\)
2 \(3 \mathrm{a}-\mathrm{b}=0\)
3 \(\mathrm{a}+\mathrm{b}=0\)
4 \(\mathrm{a}-\mathrm{b}=0\)
Limits, Continuity and Differentiability

80231 Let ' \(f\) ' be a twice differentiable function such that \(f^{\prime \prime}(x)=-f(x)\) and \(f^{\prime}(x)=g(x)=g(x)\). If \(h(x)\) \(=\{f(x)\}^{2}+\{g(x)\}^{2}\) and \(h(5)=11\), then \(h(10)=-\)

1 22
2 11
3 1
4 2
Limits, Continuity and Differentiability

80232 Let \(f\) be differentiable for all \(x\). If \(f(1)=-2\) and \(f^{\prime}(\mathbf{x}) \geq \mathbf{2}\) for \(x \in[\mathbf{1}, \mathbf{6}]\), then

1 \(f(6)=5\)
2 \(\mathrm{f}(6)\lt 6\)
3 \(\mathrm{f}(6)\lt 8\)
4 \(f(6) \geq 8\)