Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80200 If \(f(x)\) and \(g(x)\) are two functions with \(g(x)=x-\frac{1}{x}\) and \(f o g(x)=x^{3}-\frac{1}{x^{3}}\), then \(f^{\prime}(x)=\)

1 \(3 x^{2}+3\)
2 \(x^{2}-\frac{1}{x^{2}}\)
3 \(1+\frac{1}{\mathrm{x}^{2}}\)
4 \(3 x^{2}+\frac{3}{x^{4}}\)
Limits, Continuity and Differentiability

80201 If \(f(x)=\left\{\begin{array}{l}\frac{e^{3 x}-1}{4 x} \text { for } x \neq 0 \\ \frac{k+x}{4} \text { for } x=0\end{array}\right.\) is continuous at \(x=0\),

1 5
2 3
3 2
4 0
Limits, Continuity and Differentiability

80202 If \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}{[\mathrm{x}]+[-\mathrm{x}], \mathrm{x} \neq 2} \\ \mathrm{~K}, \mathrm{x}=2\end{array}\right.\) then \(f(\mathrm{x})\) is continuous at \(x=2\), provided \(K\) is equal to

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

80203 If \(f(x)=\left\{\begin{array}{cr}x \sin 1 / x, & x \neq 0 \\ k \quad, & x=0\end{array}\right.\) is continuous at \(x=0\) , then the value of \(k\) will be

1 1
2 -1
3 0
4 None of these
Limits, Continuity and Differentiability

80200 If \(f(x)\) and \(g(x)\) are two functions with \(g(x)=x-\frac{1}{x}\) and \(f o g(x)=x^{3}-\frac{1}{x^{3}}\), then \(f^{\prime}(x)=\)

1 \(3 x^{2}+3\)
2 \(x^{2}-\frac{1}{x^{2}}\)
3 \(1+\frac{1}{\mathrm{x}^{2}}\)
4 \(3 x^{2}+\frac{3}{x^{4}}\)
Limits, Continuity and Differentiability

80201 If \(f(x)=\left\{\begin{array}{l}\frac{e^{3 x}-1}{4 x} \text { for } x \neq 0 \\ \frac{k+x}{4} \text { for } x=0\end{array}\right.\) is continuous at \(x=0\),

1 5
2 3
3 2
4 0
Limits, Continuity and Differentiability

80202 If \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}{[\mathrm{x}]+[-\mathrm{x}], \mathrm{x} \neq 2} \\ \mathrm{~K}, \mathrm{x}=2\end{array}\right.\) then \(f(\mathrm{x})\) is continuous at \(x=2\), provided \(K\) is equal to

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

80203 If \(f(x)=\left\{\begin{array}{cr}x \sin 1 / x, & x \neq 0 \\ k \quad, & x=0\end{array}\right.\) is continuous at \(x=0\) , then the value of \(k\) will be

1 1
2 -1
3 0
4 None of these
Limits, Continuity and Differentiability

80200 If \(f(x)\) and \(g(x)\) are two functions with \(g(x)=x-\frac{1}{x}\) and \(f o g(x)=x^{3}-\frac{1}{x^{3}}\), then \(f^{\prime}(x)=\)

1 \(3 x^{2}+3\)
2 \(x^{2}-\frac{1}{x^{2}}\)
3 \(1+\frac{1}{\mathrm{x}^{2}}\)
4 \(3 x^{2}+\frac{3}{x^{4}}\)
Limits, Continuity and Differentiability

80201 If \(f(x)=\left\{\begin{array}{l}\frac{e^{3 x}-1}{4 x} \text { for } x \neq 0 \\ \frac{k+x}{4} \text { for } x=0\end{array}\right.\) is continuous at \(x=0\),

1 5
2 3
3 2
4 0
Limits, Continuity and Differentiability

80202 If \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}{[\mathrm{x}]+[-\mathrm{x}], \mathrm{x} \neq 2} \\ \mathrm{~K}, \mathrm{x}=2\end{array}\right.\) then \(f(\mathrm{x})\) is continuous at \(x=2\), provided \(K\) is equal to

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

80203 If \(f(x)=\left\{\begin{array}{cr}x \sin 1 / x, & x \neq 0 \\ k \quad, & x=0\end{array}\right.\) is continuous at \(x=0\) , then the value of \(k\) will be

1 1
2 -1
3 0
4 None of these
Limits, Continuity and Differentiability

80200 If \(f(x)\) and \(g(x)\) are two functions with \(g(x)=x-\frac{1}{x}\) and \(f o g(x)=x^{3}-\frac{1}{x^{3}}\), then \(f^{\prime}(x)=\)

1 \(3 x^{2}+3\)
2 \(x^{2}-\frac{1}{x^{2}}\)
3 \(1+\frac{1}{\mathrm{x}^{2}}\)
4 \(3 x^{2}+\frac{3}{x^{4}}\)
Limits, Continuity and Differentiability

80201 If \(f(x)=\left\{\begin{array}{l}\frac{e^{3 x}-1}{4 x} \text { for } x \neq 0 \\ \frac{k+x}{4} \text { for } x=0\end{array}\right.\) is continuous at \(x=0\),

1 5
2 3
3 2
4 0
Limits, Continuity and Differentiability

80202 If \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}{[\mathrm{x}]+[-\mathrm{x}], \mathrm{x} \neq 2} \\ \mathrm{~K}, \mathrm{x}=2\end{array}\right.\) then \(f(\mathrm{x})\) is continuous at \(x=2\), provided \(K\) is equal to

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

80203 If \(f(x)=\left\{\begin{array}{cr}x \sin 1 / x, & x \neq 0 \\ k \quad, & x=0\end{array}\right.\) is continuous at \(x=0\) , then the value of \(k\) will be

1 1
2 -1
3 0
4 None of these