80112
If function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{x}-\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}\lt \mathbf{0} \\ & =\mathbf{x}+\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}>\mathbf{0} \\ & =1, & & \mathbf{x}=\mathbf{0}\end{aligned}\)
then,
80114
If
\(f(x)=\left\{\begin{array}{cl}1+(|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}\lt x\lt 0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0\lt x\lt \frac{\pi}{6}\end{array}\right.\) is continuous at \(x=0\), then the values of \(a\) and \(b\) are respectively.
80112
If function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{x}-\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}\lt \mathbf{0} \\ & =\mathbf{x}+\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}>\mathbf{0} \\ & =1, & & \mathbf{x}=\mathbf{0}\end{aligned}\)
then,
80114
If
\(f(x)=\left\{\begin{array}{cl}1+(|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}\lt x\lt 0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0\lt x\lt \frac{\pi}{6}\end{array}\right.\) is continuous at \(x=0\), then the values of \(a\) and \(b\) are respectively.
80112
If function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{x}-\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}\lt \mathbf{0} \\ & =\mathbf{x}+\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}>\mathbf{0} \\ & =1, & & \mathbf{x}=\mathbf{0}\end{aligned}\)
then,
80114
If
\(f(x)=\left\{\begin{array}{cl}1+(|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}\lt x\lt 0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0\lt x\lt \frac{\pi}{6}\end{array}\right.\) is continuous at \(x=0\), then the values of \(a\) and \(b\) are respectively.
80112
If function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{x}-\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}\lt \mathbf{0} \\ & =\mathbf{x}+\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}>\mathbf{0} \\ & =1, & & \mathbf{x}=\mathbf{0}\end{aligned}\)
then,
80114
If
\(f(x)=\left\{\begin{array}{cl}1+(|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}\lt x\lt 0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0\lt x\lt \frac{\pi}{6}\end{array}\right.\) is continuous at \(x=0\), then the values of \(a\) and \(b\) are respectively.
80112
If function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{x}-\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}\lt \mathbf{0} \\ & =\mathbf{x}+\frac{|\mathbf{x}|}{\mathbf{x}}, & & \mathbf{x}>\mathbf{0} \\ & =1, & & \mathbf{x}=\mathbf{0}\end{aligned}\)
then,
80114
If
\(f(x)=\left\{\begin{array}{cl}1+(|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}\lt x\lt 0 \\ b, & x=0 \\ e^{\frac{\tan 2 x}{\tan 3 x}}, & 0\lt x\lt \frac{\pi}{6}\end{array}\right.\) is continuous at \(x=0\), then the values of \(a\) and \(b\) are respectively.