80017 Let \([x]\) denotes the greatest integer less than or equal to \(x\). Then, the value of \(\alpha\) for which the function \(f(x)=\left\{\begin{array}{l}\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, x \neq 0 \\ \alpha, \quad x=0\end{array}\right.\) is continuous at \(\mathbf{x}=\mathbf{0}\), is
80017 Let \([x]\) denotes the greatest integer less than or equal to \(x\). Then, the value of \(\alpha\) for which the function \(f(x)=\left\{\begin{array}{l}\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, x \neq 0 \\ \alpha, \quad x=0\end{array}\right.\) is continuous at \(\mathbf{x}=\mathbf{0}\), is
80017 Let \([x]\) denotes the greatest integer less than or equal to \(x\). Then, the value of \(\alpha\) for which the function \(f(x)=\left\{\begin{array}{l}\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, x \neq 0 \\ \alpha, \quad x=0\end{array}\right.\) is continuous at \(\mathbf{x}=\mathbf{0}\), is
80017 Let \([x]\) denotes the greatest integer less than or equal to \(x\). Then, the value of \(\alpha\) for which the function \(f(x)=\left\{\begin{array}{l}\frac{\sin \left[-x^{2}\right]}{\left[-x^{2}\right]}, x \neq 0 \\ \alpha, \quad x=0\end{array}\right.\) is continuous at \(\mathbf{x}=\mathbf{0}\), is