Differentiability and Continuity of Function
Limits, Continuity and Differentiability

80011 If f:[2,2]R is defined by f(x)=|1+cx1cxxx+3 for 2x<0x+1x+ for 0x2
continuous on [2,2] then c is equal to

1 23
2 3
3 32
4 32
Limits, Continuity and Differentiability

80012 f(x)={72x9x8x+121+cosxx0klog2log3x=0
Find the value of ' k ' for which the function f is continuous.

1 2
2 24
3 183
4 242
Limits, Continuity and Differentiability

80013 If the function f(x), defined below is continuous in the interval [0,π], then
f(x)={x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π4<xπ

1 a=π6,b=π12
2 a=π6,b=π12
3 a=π6,b=π12
4 a=π6,b=π12
Limits, Continuity and Differentiability

80010 If the function f defined by
f(x)={cosx, if x03x+α, if 0<x<2βx+3, if 2x411, if x>4
Where, α and β are real constants, is continuous on R, then α2+β2=

1 3
2 9
3 5
4 1
Limits, Continuity and Differentiability

80011 If f:[2,2]R is defined by f(x)=|1+cx1cxxx+3 for 2x<0x+1x+ for 0x2
continuous on [2,2] then c is equal to

1 23
2 3
3 32
4 32
Limits, Continuity and Differentiability

80012 f(x)={72x9x8x+121+cosxx0klog2log3x=0
Find the value of ' k ' for which the function f is continuous.

1 2
2 24
3 183
4 242
Limits, Continuity and Differentiability

80013 If the function f(x), defined below is continuous in the interval [0,π], then
f(x)={x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π4<xπ

1 a=π6,b=π12
2 a=π6,b=π12
3 a=π6,b=π12
4 a=π6,b=π12
Limits, Continuity and Differentiability

80010 If the function f defined by
f(x)={cosx, if x03x+α, if 0<x<2βx+3, if 2x411, if x>4
Where, α and β are real constants, is continuous on R, then α2+β2=

1 3
2 9
3 5
4 1
Limits, Continuity and Differentiability

80011 If f:[2,2]R is defined by f(x)=|1+cx1cxxx+3 for 2x<0x+1x+ for 0x2
continuous on [2,2] then c is equal to

1 23
2 3
3 32
4 32
Limits, Continuity and Differentiability

80012 f(x)={72x9x8x+121+cosxx0klog2log3x=0
Find the value of ' k ' for which the function f is continuous.

1 2
2 24
3 183
4 242
Limits, Continuity and Differentiability

80013 If the function f(x), defined below is continuous in the interval [0,π], then
f(x)={x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π4<xπ

1 a=π6,b=π12
2 a=π6,b=π12
3 a=π6,b=π12
4 a=π6,b=π12
Limits, Continuity and Differentiability

80010 If the function f defined by
f(x)={cosx, if x03x+α, if 0<x<2βx+3, if 2x411, if x>4
Where, α and β are real constants, is continuous on R, then α2+β2=

1 3
2 9
3 5
4 1
Limits, Continuity and Differentiability

80011 If f:[2,2]R is defined by f(x)=|1+cx1cxxx+3 for 2x<0x+1x+ for 0x2
continuous on [2,2] then c is equal to

1 23
2 3
3 32
4 32
Limits, Continuity and Differentiability

80012 f(x)={72x9x8x+121+cosxx0klog2log3x=0
Find the value of ' k ' for which the function f is continuous.

1 2
2 24
3 183
4 242
Limits, Continuity and Differentiability

80013 If the function f(x), defined below is continuous in the interval [0,π], then
f(x)={x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π4<xπ

1 a=π6,b=π12
2 a=π6,b=π12
3 a=π6,b=π12
4 a=π6,b=π12