80010 If the function f defined byf(x)={cosx, if x≤03x+α, if 0<x<2βx+3, if 2≤x≤411, if x>4Where, α and β are real constants, is continuous on R, then α2+β2=
(C) : f(x) is continuous on R, So at, x=0limx→0+f(x)=f(0)0+α=cos0=1α=1At,x=2,limx→2−f(x)=f(2)6+α=2β+37=2β+32β=4β=2So, α2+β2=1+4=5
80011 If f:[−2,2]→R is defined by f(x)=|1+cx−1−cxxx+3 for −2≤x<0x+1x+ for 0≤x≤2continuous on [−2,2] then c is equal to
(B) : Given,f:[−2,2]→Rf(x)={1+cx−1−cxx,−2≤x<0x+3x+1,0≤x≤2Now, LHL =limx→0−f(x)=limh→01−ch−1+ch−h×1−ch+1+ch1−ch+1+ch=limh→0(1−ch)−(1+ch)−h1−0+1+0=limh→0−2ch−h(1+1)=cAnd, RHL=limx→0+f(x)=limh→0f(0+h)=limh→00+h+30+h+1=limh→0h+3h+1=0+30+1=3Since, f is continuous at x=0,∴LHL=RHLc=3
80012 f(x)={72x−9x−8x+12−1+cosxx≠0klog2log3x=0Find the value of ' k ' for which the function f is continuous.
(D): At, x=0f(0)=limx→0f(x) k log2log3=limx→072x−9x−8x+12−1+cosx=limx→072x−9x−8x+12−2cos2x2[1+cosx=2cos2x2]=limx→072x−9x−8x+12−2cosx2(00 form )On using L-Hospital Rule, we get -=limx→072xlog72−9xlog9−8xlog8−2(−sinx2)12=limx→02[72xlog72−9xlog9−8xlog8]2sin(x2)Again using L-Hospital rule, we get -=limx→02[72x(log72)2−9x(log9)2−8x(log8)2]12(cosx2)=22[(log72)2−(log9)2−(log8)2]=22[(log9+log8)2(log9)2−(log8)2]=22[(log9+log8)2−(log9)2−(log8)2]=22[(log9)2+(log8)2+2log(9)log(8)−(log9)2−(log8)2]=22(2log9⋅log8)=42log9log8=42log32log23=422(log3)⋅3⋅log(2)=242log(3)log(2)So, klog2⋅log3=242log(2)log(3)k=242
80013 If the function f(x), defined below is continuous in the interval [0,π], thenf(x)={x+a2(sinx),0≤x<π42x(cotx)+b,π4≤x≤π2a(cos2x)−b(sinx),π4<x≤π
(D) : We have,f(x)={x+a2(sinx),0≤x<π42x(cotx)+b,π4≤x≤π2a(cos2x)−b(sinx),π4<x≤πAt, x=π4 LHL = RHLlimx→π−4f(x)=limx→π+4f(x)limx→π−4(x+a2sinx)=limx→π+4(2x⋅cotx+b)π4+a2sinπ4=2⋅π4⋅cotπ4+bπ4+a=π2+ba−b=π4 at, x=π2→LHL=RHLlimx→π−2f(x)=limx→π+2f(x)limx→π2(2xcotx+b)=limx→π2a(cos2x)−bsinx2⋅π2⋅cotπ2+b=acos2⋅π2−bsinπ20+b=−a−b2b=−aSolving equation (i) \& (ii), we get,a=π6, b=−π12