Differentiability and Continuity of Function
Limits, Continuity and Differentiability

79991 The function \(f: R \rightarrow R\) defined by
\(f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}\)
continuous for all \(x\) in

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{-1,1\}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{0\}\)
Limits, Continuity and Differentiability

79992 The values of \(a\) and \(b\) such that the function
defined by \(f(x)=\left\{\begin{array}{ll}7, \text { if } x \leq 2 \\ a x+b, \text { if } 2\lt x\lt 9 \\ 21, \text { if } x \geq 9\end{array}\right.\) is a
continuous fun

1 \(\mathrm{a}=3, \mathrm{~b}=2\)
2 \(a=2, b=3\)
3 \(\mathrm{a}=7, \mathrm{~b}=9\)
4 none of these
Limits, Continuity and Differentiability

79993 Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is

1 -2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

79994 If the function \(f(x)\), defined below is continues on the interval \([0,8]\), then
\(f(x)=\left\{\begin{array}{r}x^2+a x+b, 0 \leq x\lt 2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4\lt x \leq 8\end{array}\right\}\)

1 \(a=3, b=-2\)
2 \(a=-3, b=2\)
3 \(a=-3, b=-2\)
4 \(\mathrm{a}=3, \mathrm{~b}=2\)
Limits, Continuity and Differentiability

79995 If \(f(x)\), defined below is continuous at \(x=4\), then
\(f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, & x\lt 4 \\ a+b, & \quad x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right\}\)

1 \(a=0 \quad \& b=0\) \
2 \(a=1 \quad \& b=1\)
3 \(a=-1 \quad \& b=1\)
4 \(a=1 \quad \& b=-1\)
Limits, Continuity and Differentiability

79991 The function \(f: R \rightarrow R\) defined by
\(f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}\)
continuous for all \(x\) in

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{-1,1\}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{0\}\)
Limits, Continuity and Differentiability

79992 The values of \(a\) and \(b\) such that the function
defined by \(f(x)=\left\{\begin{array}{ll}7, \text { if } x \leq 2 \\ a x+b, \text { if } 2\lt x\lt 9 \\ 21, \text { if } x \geq 9\end{array}\right.\) is a
continuous fun

1 \(\mathrm{a}=3, \mathrm{~b}=2\)
2 \(a=2, b=3\)
3 \(\mathrm{a}=7, \mathrm{~b}=9\)
4 none of these
Limits, Continuity and Differentiability

79993 Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is

1 -2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

79994 If the function \(f(x)\), defined below is continues on the interval \([0,8]\), then
\(f(x)=\left\{\begin{array}{r}x^2+a x+b, 0 \leq x\lt 2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4\lt x \leq 8\end{array}\right\}\)

1 \(a=3, b=-2\)
2 \(a=-3, b=2\)
3 \(a=-3, b=-2\)
4 \(\mathrm{a}=3, \mathrm{~b}=2\)
Limits, Continuity and Differentiability

79995 If \(f(x)\), defined below is continuous at \(x=4\), then
\(f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, & x\lt 4 \\ a+b, & \quad x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right\}\)

1 \(a=0 \quad \& b=0\) \
2 \(a=1 \quad \& b=1\)
3 \(a=-1 \quad \& b=1\)
4 \(a=1 \quad \& b=-1\)
Limits, Continuity and Differentiability

79991 The function \(f: R \rightarrow R\) defined by
\(f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}\)
continuous for all \(x\) in

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{-1,1\}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{0\}\)
Limits, Continuity and Differentiability

79992 The values of \(a\) and \(b\) such that the function
defined by \(f(x)=\left\{\begin{array}{ll}7, \text { if } x \leq 2 \\ a x+b, \text { if } 2\lt x\lt 9 \\ 21, \text { if } x \geq 9\end{array}\right.\) is a
continuous fun

1 \(\mathrm{a}=3, \mathrm{~b}=2\)
2 \(a=2, b=3\)
3 \(\mathrm{a}=7, \mathrm{~b}=9\)
4 none of these
Limits, Continuity and Differentiability

79993 Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is

1 -2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

79994 If the function \(f(x)\), defined below is continues on the interval \([0,8]\), then
\(f(x)=\left\{\begin{array}{r}x^2+a x+b, 0 \leq x\lt 2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4\lt x \leq 8\end{array}\right\}\)

1 \(a=3, b=-2\)
2 \(a=-3, b=2\)
3 \(a=-3, b=-2\)
4 \(\mathrm{a}=3, \mathrm{~b}=2\)
Limits, Continuity and Differentiability

79995 If \(f(x)\), defined below is continuous at \(x=4\), then
\(f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, & x\lt 4 \\ a+b, & \quad x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right\}\)

1 \(a=0 \quad \& b=0\) \
2 \(a=1 \quad \& b=1\)
3 \(a=-1 \quad \& b=1\)
4 \(a=1 \quad \& b=-1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79991 The function \(f: R \rightarrow R\) defined by
\(f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}\)
continuous for all \(x\) in

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{-1,1\}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{0\}\)
Limits, Continuity and Differentiability

79992 The values of \(a\) and \(b\) such that the function
defined by \(f(x)=\left\{\begin{array}{ll}7, \text { if } x \leq 2 \\ a x+b, \text { if } 2\lt x\lt 9 \\ 21, \text { if } x \geq 9\end{array}\right.\) is a
continuous fun

1 \(\mathrm{a}=3, \mathrm{~b}=2\)
2 \(a=2, b=3\)
3 \(\mathrm{a}=7, \mathrm{~b}=9\)
4 none of these
Limits, Continuity and Differentiability

79993 Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is

1 -2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

79994 If the function \(f(x)\), defined below is continues on the interval \([0,8]\), then
\(f(x)=\left\{\begin{array}{r}x^2+a x+b, 0 \leq x\lt 2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4\lt x \leq 8\end{array}\right\}\)

1 \(a=3, b=-2\)
2 \(a=-3, b=2\)
3 \(a=-3, b=-2\)
4 \(\mathrm{a}=3, \mathrm{~b}=2\)
Limits, Continuity and Differentiability

79995 If \(f(x)\), defined below is continuous at \(x=4\), then
\(f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, & x\lt 4 \\ a+b, & \quad x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right\}\)

1 \(a=0 \quad \& b=0\) \
2 \(a=1 \quad \& b=1\)
3 \(a=-1 \quad \& b=1\)
4 \(a=1 \quad \& b=-1\)
Limits, Continuity and Differentiability

79991 The function \(f: R \rightarrow R\) defined by
\(f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}\)
continuous for all \(x\) in

1 \(\mathrm{R}-\{-1\}\)
2 \(\mathrm{R}-\{-1,1\}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{0\}\)
Limits, Continuity and Differentiability

79992 The values of \(a\) and \(b\) such that the function
defined by \(f(x)=\left\{\begin{array}{ll}7, \text { if } x \leq 2 \\ a x+b, \text { if } 2\lt x\lt 9 \\ 21, \text { if } x \geq 9\end{array}\right.\) is a
continuous fun

1 \(\mathrm{a}=3, \mathrm{~b}=2\)
2 \(a=2, b=3\)
3 \(\mathrm{a}=7, \mathrm{~b}=9\)
4 none of these
Limits, Continuity and Differentiability

79993 Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is

1 -2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

79994 If the function \(f(x)\), defined below is continues on the interval \([0,8]\), then
\(f(x)=\left\{\begin{array}{r}x^2+a x+b, 0 \leq x\lt 2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4\lt x \leq 8\end{array}\right\}\)

1 \(a=3, b=-2\)
2 \(a=-3, b=2\)
3 \(a=-3, b=-2\)
4 \(\mathrm{a}=3, \mathrm{~b}=2\)
Limits, Continuity and Differentiability

79995 If \(f(x)\), defined below is continuous at \(x=4\), then
\(f(x)=\left\{\begin{array}{l}\frac{x-4}{|x-4|}+a, & x\lt 4 \\ a+b, & \quad x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right\}\)

1 \(a=0 \quad \& b=0\) \
2 \(a=1 \quad \& b=1\)
3 \(a=-1 \quad \& b=1\)
4 \(a=1 \quad \& b=-1\)