79959 The value of limx→0coshx−cosxxsinx is
(C) : Given, limx→0coshx−cosxxsinxApplying L-Hospital rule,=limx→0sinhx+sinxx⋅cosx+sinxAgain applying L-Hospital rule,=limx→0coshx+cosxx⋅(−sinx)+cosx+cosx=cosh0∘+cos0∘0+2cos0∘=1+12=1
79960 Let f(x)={xnsin1x,x≠00,x=0},Then, f(x) is continuous but not differentiable at x=0, if
(A) : Given,f(x)=xnsin1xf(0)=0∵f(x) is continuous at x=0,Hence, f(x) will not be differentiable if n≤1 butlimx→0f(x)=f(0)limx→0xnsin1x=0f′(0)=f(x)−f(0)x−0f′(0)=xnsin1x−0xf′(0)=xn−1sin1xcontinuous at x=0∴ Possible values of n is n∈(0,1)
79961 limx→0x|x|+x2 is equal to
(D) : Given, limx→0x|x|+x2limx→0+x|x|+x2=limx→0+xx+x2[∵x>0]=limx→0+xx(1+x)=limx→0+11+x=11+0=1limx→0−x|x|+x2=limx→0−x−x+x2{∵x<0}=limx→0−xx(−1+x)=limx→0−1−1+x=1−1=−1∵limx→0+x|x|+x2≠limx→0−x|x|+x2Therefore, limx→0x|x|+x2 does not exist
79962 If a1=1 and an+1=4+3an3+2an,n≥1 and if limn→∞an=a, then the value of a is
(A) : Given, an+1=4+3an3+2an, and limn→∞an=aOn taking both side limx→∞,limn→∞an+1=limn→∞4+3an3+2ana=4+3a3+2a3a+2a2=4+3aa2=2⇒a=2
79963 If f(x)={−x2, When x≤05x−4, When 0<x≤14x2−3x, When 1<x<23x+4, When x≥2then
(B) : Given,f(x)=−x2,x≤0=5x−4,0<x≤1=4x2−3x,1<X<2=3x+4,x≥2 At, x=0limx→0−f(x)=limx→0−(−x2)=0limx→0+f(x)=limx→0+5x−4=0−4=−4∵limx→0−f(x)≠limx→0+f(x)∵f(x) is discontinuous ∵f(x) is discontinuous at x=0At,x=1limx→1−f(x)=limx→1−(5x−4)=5×1−4=1limx→1+f(x)=limx→1+4x2−3x=4−3=1∵limx→1−f(x)=limx→1+f(x)∴f(x) is continuous at x=1At, x=2limx→2−f(x)=limx→2−4x2−3x=4×22−3×2=16−6=10limx→2+f(x)=limx→2+3x+4=3×2+4=10∵limx→2−f(x)=limx→2+f(x)Therefore, f(x) continuous at x=2