Differentiability and Continuity of Function
Limits, Continuity and Differentiability

79886 The points of discontinuity of the function \(\begin{aligned} & f(x)=\frac{1}{x-1} \text { if } 0 \leq x \leq 2 \\ & f(x)=\frac{x+5}{x+3} \text { if } 2\lt x \leq 4\end{aligned}\), in its domain are

1 \(x=2\) only
2 \(x=1, x=2\)
3 \(x=0, x=2\)
4 \(x=4\) only
Limits, Continuity and Differentiability

79887 If the function \(f(x)=\frac{(1-\cos 5 x) \sin 5 x}{x^{2} \sin 3 x}, x \neq 0\), is continuous at \(x=0\), then \(f(0)=\)

1 \(\frac{375}{2}\)
2 \(\frac{125}{6}\)
3 \(\frac{125}{3}\)
4 \(\frac{25}{3}\)
Limits, Continuity and Differentiability

79888 If \(\begin{aligned} f(x) & =\frac{x^2-9}{x-3}+\alpha, & & x>3 \\ & =5, & & x=3 \\ & =2 x^2+3 x+\beta, & & x\lt 3\end{aligned}\)
is continuous at \(x=3\), then \(\alpha-\beta=\)

1 -22
2 21
3 -23
4 -11
Limits, Continuity and Differentiability

79889 If
\(\begin{aligned} f(x) & =6 \beta-3 \alpha x, \text { if }-4 \leq x\lt -2 \\ & =4 x+1, \text { if }-2 \leq x \leq 2\end{aligned}\)
is continuous on \([-4,2]\), then \(\alpha+\beta=\)

1 \(\frac{-7}{6}\)
2 \(\frac{-4}{7}\)
3 \(\frac{4}{7}\)
4 \(\frac{7}{6}\)
Limits, Continuity and Differentiability

79886 The points of discontinuity of the function \(\begin{aligned} & f(x)=\frac{1}{x-1} \text { if } 0 \leq x \leq 2 \\ & f(x)=\frac{x+5}{x+3} \text { if } 2\lt x \leq 4\end{aligned}\), in its domain are

1 \(x=2\) only
2 \(x=1, x=2\)
3 \(x=0, x=2\)
4 \(x=4\) only
Limits, Continuity and Differentiability

79887 If the function \(f(x)=\frac{(1-\cos 5 x) \sin 5 x}{x^{2} \sin 3 x}, x \neq 0\), is continuous at \(x=0\), then \(f(0)=\)

1 \(\frac{375}{2}\)
2 \(\frac{125}{6}\)
3 \(\frac{125}{3}\)
4 \(\frac{25}{3}\)
Limits, Continuity and Differentiability

79888 If \(\begin{aligned} f(x) & =\frac{x^2-9}{x-3}+\alpha, & & x>3 \\ & =5, & & x=3 \\ & =2 x^2+3 x+\beta, & & x\lt 3\end{aligned}\)
is continuous at \(x=3\), then \(\alpha-\beta=\)

1 -22
2 21
3 -23
4 -11
Limits, Continuity and Differentiability

79889 If
\(\begin{aligned} f(x) & =6 \beta-3 \alpha x, \text { if }-4 \leq x\lt -2 \\ & =4 x+1, \text { if }-2 \leq x \leq 2\end{aligned}\)
is continuous on \([-4,2]\), then \(\alpha+\beta=\)

1 \(\frac{-7}{6}\)
2 \(\frac{-4}{7}\)
3 \(\frac{4}{7}\)
4 \(\frac{7}{6}\)
Limits, Continuity and Differentiability

79886 The points of discontinuity of the function \(\begin{aligned} & f(x)=\frac{1}{x-1} \text { if } 0 \leq x \leq 2 \\ & f(x)=\frac{x+5}{x+3} \text { if } 2\lt x \leq 4\end{aligned}\), in its domain are

1 \(x=2\) only
2 \(x=1, x=2\)
3 \(x=0, x=2\)
4 \(x=4\) only
Limits, Continuity and Differentiability

79887 If the function \(f(x)=\frac{(1-\cos 5 x) \sin 5 x}{x^{2} \sin 3 x}, x \neq 0\), is continuous at \(x=0\), then \(f(0)=\)

1 \(\frac{375}{2}\)
2 \(\frac{125}{6}\)
3 \(\frac{125}{3}\)
4 \(\frac{25}{3}\)
Limits, Continuity and Differentiability

79888 If \(\begin{aligned} f(x) & =\frac{x^2-9}{x-3}+\alpha, & & x>3 \\ & =5, & & x=3 \\ & =2 x^2+3 x+\beta, & & x\lt 3\end{aligned}\)
is continuous at \(x=3\), then \(\alpha-\beta=\)

1 -22
2 21
3 -23
4 -11
Limits, Continuity and Differentiability

79889 If
\(\begin{aligned} f(x) & =6 \beta-3 \alpha x, \text { if }-4 \leq x\lt -2 \\ & =4 x+1, \text { if }-2 \leq x \leq 2\end{aligned}\)
is continuous on \([-4,2]\), then \(\alpha+\beta=\)

1 \(\frac{-7}{6}\)
2 \(\frac{-4}{7}\)
3 \(\frac{4}{7}\)
4 \(\frac{7}{6}\)
Limits, Continuity and Differentiability

79886 The points of discontinuity of the function \(\begin{aligned} & f(x)=\frac{1}{x-1} \text { if } 0 \leq x \leq 2 \\ & f(x)=\frac{x+5}{x+3} \text { if } 2\lt x \leq 4\end{aligned}\), in its domain are

1 \(x=2\) only
2 \(x=1, x=2\)
3 \(x=0, x=2\)
4 \(x=4\) only
Limits, Continuity and Differentiability

79887 If the function \(f(x)=\frac{(1-\cos 5 x) \sin 5 x}{x^{2} \sin 3 x}, x \neq 0\), is continuous at \(x=0\), then \(f(0)=\)

1 \(\frac{375}{2}\)
2 \(\frac{125}{6}\)
3 \(\frac{125}{3}\)
4 \(\frac{25}{3}\)
Limits, Continuity and Differentiability

79888 If \(\begin{aligned} f(x) & =\frac{x^2-9}{x-3}+\alpha, & & x>3 \\ & =5, & & x=3 \\ & =2 x^2+3 x+\beta, & & x\lt 3\end{aligned}\)
is continuous at \(x=3\), then \(\alpha-\beta=\)

1 -22
2 21
3 -23
4 -11
Limits, Continuity and Differentiability

79889 If
\(\begin{aligned} f(x) & =6 \beta-3 \alpha x, \text { if }-4 \leq x\lt -2 \\ & =4 x+1, \text { if }-2 \leq x \leq 2\end{aligned}\)
is continuous on \([-4,2]\), then \(\alpha+\beta=\)

1 \(\frac{-7}{6}\)
2 \(\frac{-4}{7}\)
3 \(\frac{4}{7}\)
4 \(\frac{7}{6}\)