79993
Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is
79993
Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is
79993
Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is
79993
Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is
79993
Let \(f(x)\) be a function defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{4 x}-\mathbf{5}, \text { if } & \mathbf{x} \leq \mathbf{2} \\ \mathbf{x}-\lambda, \text { if } & \mathbf{x}>2\end{array}\right.\) if \(\lim _{x \rightarrow 2} f(x)\) exists then the value of \(\lambda\) is