NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Limits, Continuity and Differentiability
79561
If \(f^{\prime}(2)=6, f^{\prime}(1)=4\), then \(\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h+h^{2}+1\right)-f(1)}\) is equal to
79566
The value of \(\lim _{\alpha \rightarrow 0} \frac{{coses}^{-1}(\sec \alpha)+\cot ^{-1}(\tan \alpha)+\cot ^{-1} \cos \left(\sin ^{-1} \alpha\right)}{\alpha}\) is
79561
If \(f^{\prime}(2)=6, f^{\prime}(1)=4\), then \(\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h+h^{2}+1\right)-f(1)}\) is equal to
79566
The value of \(\lim _{\alpha \rightarrow 0} \frac{{coses}^{-1}(\sec \alpha)+\cot ^{-1}(\tan \alpha)+\cot ^{-1} \cos \left(\sin ^{-1} \alpha\right)}{\alpha}\) is
79561
If \(f^{\prime}(2)=6, f^{\prime}(1)=4\), then \(\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h+h^{2}+1\right)-f(1)}\) is equal to
79566
The value of \(\lim _{\alpha \rightarrow 0} \frac{{coses}^{-1}(\sec \alpha)+\cot ^{-1}(\tan \alpha)+\cot ^{-1} \cos \left(\sin ^{-1} \alpha\right)}{\alpha}\) is
79561
If \(f^{\prime}(2)=6, f^{\prime}(1)=4\), then \(\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^{2}\right)-f(2)}{f\left(h+h^{2}+1\right)-f(1)}\) is equal to
79566
The value of \(\lim _{\alpha \rightarrow 0} \frac{{coses}^{-1}(\sec \alpha)+\cot ^{-1}(\tan \alpha)+\cot ^{-1} \cos \left(\sin ^{-1} \alpha\right)}{\alpha}\) is