Concept of Elementary Row and Column Operation
Matrix and Determinant

79446 If \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]\), then rank of \(A\) is equal to :

1 0
2 1
3 2
4 3
Matrix and Determinant

79447 The system \(\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & -3 \\ 2 & 6 & a\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ b \\ 2\end{array}\right]\) has no solution,

1 \(a=-5 b \neq 5\)
2 \(a=-5 b=5\)
3 \(a \neq-5, b=5\)
4 \(a \neq-5, b \neq 5\)
Matrix and Determinant

79448 The number of solutions of the system of equations \(2 x+y-z=7, x-3 y+2 z=1\) and \(x+\) \(4 y-3 z=5\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79449 The values of \(x, y\) and \(z\) for the system of equations \(x+2 y+3 z=6,3 x-2 y+z=2\) and \(4 x+2 y+z=7\) are respectively

1 \(1,1,1\)
2 \(1,2,3\)
3 \(1,3,2\)
4 2, 3, 1
Matrix and Determinant

79446 If \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]\), then rank of \(A\) is equal to :

1 0
2 1
3 2
4 3
Matrix and Determinant

79447 The system \(\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & -3 \\ 2 & 6 & a\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ b \\ 2\end{array}\right]\) has no solution,

1 \(a=-5 b \neq 5\)
2 \(a=-5 b=5\)
3 \(a \neq-5, b=5\)
4 \(a \neq-5, b \neq 5\)
Matrix and Determinant

79448 The number of solutions of the system of equations \(2 x+y-z=7, x-3 y+2 z=1\) and \(x+\) \(4 y-3 z=5\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79449 The values of \(x, y\) and \(z\) for the system of equations \(x+2 y+3 z=6,3 x-2 y+z=2\) and \(4 x+2 y+z=7\) are respectively

1 \(1,1,1\)
2 \(1,2,3\)
3 \(1,3,2\)
4 2, 3, 1
Matrix and Determinant

79446 If \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]\), then rank of \(A\) is equal to :

1 0
2 1
3 2
4 3
Matrix and Determinant

79447 The system \(\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & -3 \\ 2 & 6 & a\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ b \\ 2\end{array}\right]\) has no solution,

1 \(a=-5 b \neq 5\)
2 \(a=-5 b=5\)
3 \(a \neq-5, b=5\)
4 \(a \neq-5, b \neq 5\)
Matrix and Determinant

79448 The number of solutions of the system of equations \(2 x+y-z=7, x-3 y+2 z=1\) and \(x+\) \(4 y-3 z=5\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79449 The values of \(x, y\) and \(z\) for the system of equations \(x+2 y+3 z=6,3 x-2 y+z=2\) and \(4 x+2 y+z=7\) are respectively

1 \(1,1,1\)
2 \(1,2,3\)
3 \(1,3,2\)
4 2, 3, 1
Matrix and Determinant

79446 If \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]\), then rank of \(A\) is equal to :

1 0
2 1
3 2
4 3
Matrix and Determinant

79447 The system \(\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & -3 \\ 2 & 6 & a\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ b \\ 2\end{array}\right]\) has no solution,

1 \(a=-5 b \neq 5\)
2 \(a=-5 b=5\)
3 \(a \neq-5, b=5\)
4 \(a \neq-5, b \neq 5\)
Matrix and Determinant

79448 The number of solutions of the system of equations \(2 x+y-z=7, x-3 y+2 z=1\) and \(x+\) \(4 y-3 z=5\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79449 The values of \(x, y\) and \(z\) for the system of equations \(x+2 y+3 z=6,3 x-2 y+z=2\) and \(4 x+2 y+z=7\) are respectively

1 \(1,1,1\)
2 \(1,2,3\)
3 \(1,3,2\)
4 2, 3, 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here