Concept of Elementary Row and Column Operation
Matrix and Determinant

79432 If \(a, b, c\) are different and \(\left|\begin{array}{llll}\mathbf{a} & \mathbf{a}^2 & \mathbf{a}^3 & -1 \\ \mathbf{b} & \mathbf{b}^2 & \mathbf{b}^3&-1 \\ \mathbf{c} & \mathbf{c}^2 & \mathbf{c}^3&-1\end{array}\right|=\mathbf{0}\) then abc is equal to

1 0
2 1
3 -1
4 none of these
Matrix and Determinant

79433 If \(\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1\end{array}\right|=x+i y\), where \(i=\sqrt{-1}\), then \(\begin{array}{lll}20 & 3 & i\end{array}\)
what is \(x\) equal to?

1 3
2 2
3 1
4 0
Matrix and Determinant

79434 If the three linear equations \(x+4 a y+a z=0 ; x\) \(+3 b y+b z=0, x+2 c y+c z=0\) have a nontrivial solution, where \(\mathbf{a} \neq 0, \mathbf{b} \neq 0, \mathbf{c} \neq 0\), then \(\mathbf{a b}+\mathbf{b c}\) is equal to

1 \(2 \mathrm{ac}\)
2 \(-\mathrm{ac}\)
3 ac
4 \(-2 \mathrm{ac}\)
Matrix and Determinant

79435 The equations \(2 x+3 y+4=0 ; 3 x+4 y+6=0\) and \(4 x+5 y+8=0\) are

1 consistent with unique solution
2 inconsistent
3 consistent with infinitely many solution
4 None of the above
Matrix and Determinant

79436 If the lines \(p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1\) and \(p_{3} x\) \(+q_{3} y=1\) be concurrent, then the points \(\left(p_{1}, q_{1}\right)\), \(\left(p_{2}, q_{2}\right)\) and \(\left(p_{3}, q_{3}\right)\)

1 are collinear
2 form an equilateral triangle
3 form a scalene triangle
4 form a right angled triangle
Matrix and Determinant

79432 If \(a, b, c\) are different and \(\left|\begin{array}{llll}\mathbf{a} & \mathbf{a}^2 & \mathbf{a}^3 & -1 \\ \mathbf{b} & \mathbf{b}^2 & \mathbf{b}^3&-1 \\ \mathbf{c} & \mathbf{c}^2 & \mathbf{c}^3&-1\end{array}\right|=\mathbf{0}\) then abc is equal to

1 0
2 1
3 -1
4 none of these
Matrix and Determinant

79433 If \(\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1\end{array}\right|=x+i y\), where \(i=\sqrt{-1}\), then \(\begin{array}{lll}20 & 3 & i\end{array}\)
what is \(x\) equal to?

1 3
2 2
3 1
4 0
Matrix and Determinant

79434 If the three linear equations \(x+4 a y+a z=0 ; x\) \(+3 b y+b z=0, x+2 c y+c z=0\) have a nontrivial solution, where \(\mathbf{a} \neq 0, \mathbf{b} \neq 0, \mathbf{c} \neq 0\), then \(\mathbf{a b}+\mathbf{b c}\) is equal to

1 \(2 \mathrm{ac}\)
2 \(-\mathrm{ac}\)
3 ac
4 \(-2 \mathrm{ac}\)
Matrix and Determinant

79435 The equations \(2 x+3 y+4=0 ; 3 x+4 y+6=0\) and \(4 x+5 y+8=0\) are

1 consistent with unique solution
2 inconsistent
3 consistent with infinitely many solution
4 None of the above
Matrix and Determinant

79436 If the lines \(p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1\) and \(p_{3} x\) \(+q_{3} y=1\) be concurrent, then the points \(\left(p_{1}, q_{1}\right)\), \(\left(p_{2}, q_{2}\right)\) and \(\left(p_{3}, q_{3}\right)\)

1 are collinear
2 form an equilateral triangle
3 form a scalene triangle
4 form a right angled triangle
Matrix and Determinant

79432 If \(a, b, c\) are different and \(\left|\begin{array}{llll}\mathbf{a} & \mathbf{a}^2 & \mathbf{a}^3 & -1 \\ \mathbf{b} & \mathbf{b}^2 & \mathbf{b}^3&-1 \\ \mathbf{c} & \mathbf{c}^2 & \mathbf{c}^3&-1\end{array}\right|=\mathbf{0}\) then abc is equal to

1 0
2 1
3 -1
4 none of these
Matrix and Determinant

79433 If \(\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1\end{array}\right|=x+i y\), where \(i=\sqrt{-1}\), then \(\begin{array}{lll}20 & 3 & i\end{array}\)
what is \(x\) equal to?

1 3
2 2
3 1
4 0
Matrix and Determinant

79434 If the three linear equations \(x+4 a y+a z=0 ; x\) \(+3 b y+b z=0, x+2 c y+c z=0\) have a nontrivial solution, where \(\mathbf{a} \neq 0, \mathbf{b} \neq 0, \mathbf{c} \neq 0\), then \(\mathbf{a b}+\mathbf{b c}\) is equal to

1 \(2 \mathrm{ac}\)
2 \(-\mathrm{ac}\)
3 ac
4 \(-2 \mathrm{ac}\)
Matrix and Determinant

79435 The equations \(2 x+3 y+4=0 ; 3 x+4 y+6=0\) and \(4 x+5 y+8=0\) are

1 consistent with unique solution
2 inconsistent
3 consistent with infinitely many solution
4 None of the above
Matrix and Determinant

79436 If the lines \(p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1\) and \(p_{3} x\) \(+q_{3} y=1\) be concurrent, then the points \(\left(p_{1}, q_{1}\right)\), \(\left(p_{2}, q_{2}\right)\) and \(\left(p_{3}, q_{3}\right)\)

1 are collinear
2 form an equilateral triangle
3 form a scalene triangle
4 form a right angled triangle
Matrix and Determinant

79432 If \(a, b, c\) are different and \(\left|\begin{array}{llll}\mathbf{a} & \mathbf{a}^2 & \mathbf{a}^3 & -1 \\ \mathbf{b} & \mathbf{b}^2 & \mathbf{b}^3&-1 \\ \mathbf{c} & \mathbf{c}^2 & \mathbf{c}^3&-1\end{array}\right|=\mathbf{0}\) then abc is equal to

1 0
2 1
3 -1
4 none of these
Matrix and Determinant

79433 If \(\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1\end{array}\right|=x+i y\), where \(i=\sqrt{-1}\), then \(\begin{array}{lll}20 & 3 & i\end{array}\)
what is \(x\) equal to?

1 3
2 2
3 1
4 0
Matrix and Determinant

79434 If the three linear equations \(x+4 a y+a z=0 ; x\) \(+3 b y+b z=0, x+2 c y+c z=0\) have a nontrivial solution, where \(\mathbf{a} \neq 0, \mathbf{b} \neq 0, \mathbf{c} \neq 0\), then \(\mathbf{a b}+\mathbf{b c}\) is equal to

1 \(2 \mathrm{ac}\)
2 \(-\mathrm{ac}\)
3 ac
4 \(-2 \mathrm{ac}\)
Matrix and Determinant

79435 The equations \(2 x+3 y+4=0 ; 3 x+4 y+6=0\) and \(4 x+5 y+8=0\) are

1 consistent with unique solution
2 inconsistent
3 consistent with infinitely many solution
4 None of the above
Matrix and Determinant

79436 If the lines \(p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1\) and \(p_{3} x\) \(+q_{3} y=1\) be concurrent, then the points \(\left(p_{1}, q_{1}\right)\), \(\left(p_{2}, q_{2}\right)\) and \(\left(p_{3}, q_{3}\right)\)

1 are collinear
2 form an equilateral triangle
3 form a scalene triangle
4 form a right angled triangle
Matrix and Determinant

79432 If \(a, b, c\) are different and \(\left|\begin{array}{llll}\mathbf{a} & \mathbf{a}^2 & \mathbf{a}^3 & -1 \\ \mathbf{b} & \mathbf{b}^2 & \mathbf{b}^3&-1 \\ \mathbf{c} & \mathbf{c}^2 & \mathbf{c}^3&-1\end{array}\right|=\mathbf{0}\) then abc is equal to

1 0
2 1
3 -1
4 none of these
Matrix and Determinant

79433 If \(\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1\end{array}\right|=x+i y\), where \(i=\sqrt{-1}\), then \(\begin{array}{lll}20 & 3 & i\end{array}\)
what is \(x\) equal to?

1 3
2 2
3 1
4 0
Matrix and Determinant

79434 If the three linear equations \(x+4 a y+a z=0 ; x\) \(+3 b y+b z=0, x+2 c y+c z=0\) have a nontrivial solution, where \(\mathbf{a} \neq 0, \mathbf{b} \neq 0, \mathbf{c} \neq 0\), then \(\mathbf{a b}+\mathbf{b c}\) is equal to

1 \(2 \mathrm{ac}\)
2 \(-\mathrm{ac}\)
3 ac
4 \(-2 \mathrm{ac}\)
Matrix and Determinant

79435 The equations \(2 x+3 y+4=0 ; 3 x+4 y+6=0\) and \(4 x+5 y+8=0\) are

1 consistent with unique solution
2 inconsistent
3 consistent with infinitely many solution
4 None of the above
Matrix and Determinant

79436 If the lines \(p_{1} x+q_{1} y=1, p_{2} x+q_{2} y=1\) and \(p_{3} x\) \(+q_{3} y=1\) be concurrent, then the points \(\left(p_{1}, q_{1}\right)\), \(\left(p_{2}, q_{2}\right)\) and \(\left(p_{3}, q_{3}\right)\)

1 are collinear
2 form an equilateral triangle
3 form a scalene triangle
4 form a right angled triangle