79234 Let Δ=|Axx21Byy21Czz21| and Δ1=|ABCxyzzyzxxy| then
(B) : Given,Δ1=|ABCxyz2y2xxy|According to gives questions,Δ=|Axx21Byy21Czz21|=xyz|Ax1xBy1yCz1z|Operating C3→ xyz C3=|AxyzByxzCzxy|=|ABCxyzzyzxxy|=Δ1∴Δ=Δ1
79235 If f(x),g(x) and h(x) are three polynomials of degree 2 andΔ(x)=|f(x)g(x)h(x)f′(x)g′(x)h′(x)f′′(x)g′′(x)h′′(x)|then Δ(x) is a polynomial of degree 2 and
(C) : It is given thatf(x),g(x) and h(x) are the polynomials of degree 2 ,∴fm(x)=gm(x)=hm(x)=0Δ(x)=|f(x)g(x)h(x)f′(x)g′(x)h′(x)f′′(x)g′′(x)h′′(x)|Δ′(x)=|f′(x)g′(x)h′(x)f′(x)g′(x)h′(x)f′′(x)g′′(x)h′′(x)|+|f(x)g(x)h(x)f′′(x)g′′(x)h′′(x)f′′(x)g′′(x)h′′(x)+|f(x)g(x)h(x)f′(x)g′(x)h′(x)f′′′(x)g′′′(x)h′′′(x)|Δ′(x)=0+0+0=0Δ(x)= constant Thus, Δ(x) is the polynomial of degree zero.
79236 If C=2cosθ, then the value of the determinantΔ=|C101C161C| is
(D) : Given, C=2cosθAccording to given summationLet, Δ=|C101C161C|=C(C2−1)−1(C−6)=C3−2C+6Put C=2cosθ, we getΔ=(2cosθ)3−2(2cosθ)+6Δ=8cos3θ−4cosθ+6
79237 The only integral root of the equation|2−y2325−y63410−y|=0 is
(C) : Given,|2−y2325−y63410−y|=0(2−y)[(5−y)(10−y)−24]−2[20−2y−18]+3(8− 15+3y)=0(2−y)[50−5y−10y+y2−24]−40+4y+36−21+ 9y=0(2−y)[y2−15y+26]+13y−25=02y2−30y+52−y3+15y2−26y+13y−25=0−y3+17y2−43y+27=0Only y=1 satisfy this equation.
79238 If=|2cosx10x−π22cosx1| then f′(π/2) is equal to.
(B) : Given,f(x)=|2cosx10π−π/22cosx1012cosx|Expanding always first column.=2cosx(4cos2x−1)−[(x−π/2)2cosx−0]+0=8cos3x−2cosx−2xcosx+πcosx(x)=24cos2x(−sinx)+2sinx−2(cosx−xsinx)−πsinxf′(π/2)=0+2+0=2