Determinants in 2-D
Matrix and Determinant

79190 If \(S_{r}=\left|\begin{array}{ccc}2 r & x & n(n+1) \\ 6 r^{2}-1 & y & n^{2}(2 n+3) \\ 4 r^{3}-2 n r & z & n^{3}(n+1)\end{array}\right|\), then the value of \(\sum_{r=1}^{n} S_{r}\) is independent of

1 only \(x\)
2 only y
3 only \(\mathrm{n}\)
4 \(x, y, z\) and \(n\)
Matrix and Determinant

79191 If \(P=3 \hat{i}+5 \hat{j}-\hat{k}\) and \(Q=\hat{i}+2 \hat{j}+3 \hat{k}\) are two sides of a triangle, then its area is equal to ..........sq. units.

1 \(\frac{\sqrt{390}}{4}\)
2 \(\sqrt{390}\)
3 \(\frac{\sqrt{390}}{2}\)
4 \(\frac{\sqrt{390}}{8}\)
Matrix and Determinant

79192 If \(\left[\begin{array}{rrr}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]\) has no inverse, then the real value of \(x\) is

1 2
2 3
3 0
4 1
Matrix and Determinant

79193 Let \(A=\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3\end{array}\right)\). Then, the roots of the equation det \(\left(A-\lambda I_{3}\right)=0\) (where \(I_{3}\) is the identity matrix of order 3 ) are

1 \(3,0,3\)
2 \(0,3,6\)
3 \(1,0,-6\)
4 \(3,3,6\)
Matrix and Determinant

79190 If \(S_{r}=\left|\begin{array}{ccc}2 r & x & n(n+1) \\ 6 r^{2}-1 & y & n^{2}(2 n+3) \\ 4 r^{3}-2 n r & z & n^{3}(n+1)\end{array}\right|\), then the value of \(\sum_{r=1}^{n} S_{r}\) is independent of

1 only \(x\)
2 only y
3 only \(\mathrm{n}\)
4 \(x, y, z\) and \(n\)
Matrix and Determinant

79191 If \(P=3 \hat{i}+5 \hat{j}-\hat{k}\) and \(Q=\hat{i}+2 \hat{j}+3 \hat{k}\) are two sides of a triangle, then its area is equal to ..........sq. units.

1 \(\frac{\sqrt{390}}{4}\)
2 \(\sqrt{390}\)
3 \(\frac{\sqrt{390}}{2}\)
4 \(\frac{\sqrt{390}}{8}\)
Matrix and Determinant

79192 If \(\left[\begin{array}{rrr}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]\) has no inverse, then the real value of \(x\) is

1 2
2 3
3 0
4 1
Matrix and Determinant

79193 Let \(A=\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3\end{array}\right)\). Then, the roots of the equation det \(\left(A-\lambda I_{3}\right)=0\) (where \(I_{3}\) is the identity matrix of order 3 ) are

1 \(3,0,3\)
2 \(0,3,6\)
3 \(1,0,-6\)
4 \(3,3,6\)
Matrix and Determinant

79190 If \(S_{r}=\left|\begin{array}{ccc}2 r & x & n(n+1) \\ 6 r^{2}-1 & y & n^{2}(2 n+3) \\ 4 r^{3}-2 n r & z & n^{3}(n+1)\end{array}\right|\), then the value of \(\sum_{r=1}^{n} S_{r}\) is independent of

1 only \(x\)
2 only y
3 only \(\mathrm{n}\)
4 \(x, y, z\) and \(n\)
Matrix and Determinant

79191 If \(P=3 \hat{i}+5 \hat{j}-\hat{k}\) and \(Q=\hat{i}+2 \hat{j}+3 \hat{k}\) are two sides of a triangle, then its area is equal to ..........sq. units.

1 \(\frac{\sqrt{390}}{4}\)
2 \(\sqrt{390}\)
3 \(\frac{\sqrt{390}}{2}\)
4 \(\frac{\sqrt{390}}{8}\)
Matrix and Determinant

79192 If \(\left[\begin{array}{rrr}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]\) has no inverse, then the real value of \(x\) is

1 2
2 3
3 0
4 1
Matrix and Determinant

79193 Let \(A=\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3\end{array}\right)\). Then, the roots of the equation det \(\left(A-\lambda I_{3}\right)=0\) (where \(I_{3}\) is the identity matrix of order 3 ) are

1 \(3,0,3\)
2 \(0,3,6\)
3 \(1,0,-6\)
4 \(3,3,6\)
Matrix and Determinant

79190 If \(S_{r}=\left|\begin{array}{ccc}2 r & x & n(n+1) \\ 6 r^{2}-1 & y & n^{2}(2 n+3) \\ 4 r^{3}-2 n r & z & n^{3}(n+1)\end{array}\right|\), then the value of \(\sum_{r=1}^{n} S_{r}\) is independent of

1 only \(x\)
2 only y
3 only \(\mathrm{n}\)
4 \(x, y, z\) and \(n\)
Matrix and Determinant

79191 If \(P=3 \hat{i}+5 \hat{j}-\hat{k}\) and \(Q=\hat{i}+2 \hat{j}+3 \hat{k}\) are two sides of a triangle, then its area is equal to ..........sq. units.

1 \(\frac{\sqrt{390}}{4}\)
2 \(\sqrt{390}\)
3 \(\frac{\sqrt{390}}{2}\)
4 \(\frac{\sqrt{390}}{8}\)
Matrix and Determinant

79192 If \(\left[\begin{array}{rrr}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]\) has no inverse, then the real value of \(x\) is

1 2
2 3
3 0
4 1
Matrix and Determinant

79193 Let \(A=\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3\end{array}\right)\). Then, the roots of the equation det \(\left(A-\lambda I_{3}\right)=0\) (where \(I_{3}\) is the identity matrix of order 3 ) are

1 \(3,0,3\)
2 \(0,3,6\)
3 \(1,0,-6\)
4 \(3,3,6\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here