Determinants in 2-D
Matrix and Determinant

79177 if \(y \quad y^{2} 1+y^{3}=0, x \neq y \neq z\) then \(1+x y z\) is \(\left.\begin{array}{lll}\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}\end{array} \right\rvert\,\)
equal to

1 0
2 -1
3 1
4 2
Matrix and Determinant

79178 If \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse, then the real

1 2
2 3
3 0
4 1
Matrix and Determinant

79179 If one of the roots of \(\left|\begin{array}{lll}3 & 5 & x \\ 7 & x & 7 \\ x & 5 & 3\end{array}\right|=0\) is -10 , then

1 3,7
2 4,7
3 3,9
4 3,4
Matrix and Determinant

79180 \(\left[\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right]\) is equal to

1 \(3 x^{2}+4 x+5\)
2 \(x^{3}+8 x+2\)
3 \(0\)
4 \(– 2\)
Matrix and Determinant

79181 \(2\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b}\end{array}\right|\) is equal to

1 0
2 1
3 2
4 a
Matrix and Determinant

79177 if \(y \quad y^{2} 1+y^{3}=0, x \neq y \neq z\) then \(1+x y z\) is \(\left.\begin{array}{lll}\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}\end{array} \right\rvert\,\)
equal to

1 0
2 -1
3 1
4 2
Matrix and Determinant

79178 If \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse, then the real

1 2
2 3
3 0
4 1
Matrix and Determinant

79179 If one of the roots of \(\left|\begin{array}{lll}3 & 5 & x \\ 7 & x & 7 \\ x & 5 & 3\end{array}\right|=0\) is -10 , then

1 3,7
2 4,7
3 3,9
4 3,4
Matrix and Determinant

79180 \(\left[\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right]\) is equal to

1 \(3 x^{2}+4 x+5\)
2 \(x^{3}+8 x+2\)
3 \(0\)
4 \(– 2\)
Matrix and Determinant

79181 \(2\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b}\end{array}\right|\) is equal to

1 0
2 1
3 2
4 a
Matrix and Determinant

79177 if \(y \quad y^{2} 1+y^{3}=0, x \neq y \neq z\) then \(1+x y z\) is \(\left.\begin{array}{lll}\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}\end{array} \right\rvert\,\)
equal to

1 0
2 -1
3 1
4 2
Matrix and Determinant

79178 If \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse, then the real

1 2
2 3
3 0
4 1
Matrix and Determinant

79179 If one of the roots of \(\left|\begin{array}{lll}3 & 5 & x \\ 7 & x & 7 \\ x & 5 & 3\end{array}\right|=0\) is -10 , then

1 3,7
2 4,7
3 3,9
4 3,4
Matrix and Determinant

79180 \(\left[\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right]\) is equal to

1 \(3 x^{2}+4 x+5\)
2 \(x^{3}+8 x+2\)
3 \(0\)
4 \(– 2\)
Matrix and Determinant

79181 \(2\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b}\end{array}\right|\) is equal to

1 0
2 1
3 2
4 a
Matrix and Determinant

79177 if \(y \quad y^{2} 1+y^{3}=0, x \neq y \neq z\) then \(1+x y z\) is \(\left.\begin{array}{lll}\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}\end{array} \right\rvert\,\)
equal to

1 0
2 -1
3 1
4 2
Matrix and Determinant

79178 If \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse, then the real

1 2
2 3
3 0
4 1
Matrix and Determinant

79179 If one of the roots of \(\left|\begin{array}{lll}3 & 5 & x \\ 7 & x & 7 \\ x & 5 & 3\end{array}\right|=0\) is -10 , then

1 3,7
2 4,7
3 3,9
4 3,4
Matrix and Determinant

79180 \(\left[\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right]\) is equal to

1 \(3 x^{2}+4 x+5\)
2 \(x^{3}+8 x+2\)
3 \(0\)
4 \(– 2\)
Matrix and Determinant

79181 \(2\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b}\end{array}\right|\) is equal to

1 0
2 1
3 2
4 a
Matrix and Determinant

79177 if \(y \quad y^{2} 1+y^{3}=0, x \neq y \neq z\) then \(1+x y z\) is \(\left.\begin{array}{lll}\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}\end{array} \right\rvert\,\)
equal to

1 0
2 -1
3 1
4 2
Matrix and Determinant

79178 If \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse, then the real

1 2
2 3
3 0
4 1
Matrix and Determinant

79179 If one of the roots of \(\left|\begin{array}{lll}3 & 5 & x \\ 7 & x & 7 \\ x & 5 & 3\end{array}\right|=0\) is -10 , then

1 3,7
2 4,7
3 3,9
4 3,4
Matrix and Determinant

79180 \(\left[\begin{array}{ccc}x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15\end{array}\right]\) is equal to

1 \(3 x^{2}+4 x+5\)
2 \(x^{3}+8 x+2\)
3 \(0\)
4 \(– 2\)
Matrix and Determinant

79181 \(2\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}^{2}-\mathbf{b c} & \mathbf{b}^{2}-\mathbf{c a} & \mathbf{c}^{2}-\mathbf{a b}\end{array}\right|\) is equal to

1 0
2 1
3 2
4 a