79174
The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is
79175
If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is
79174
The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is
79175
If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is
79174
The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is
79175
If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is
79174
The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is
79175
If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is