Determinants in 2-D
Matrix and Determinant

79173 What is the area of the triangle with vertices at \((\mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{2}, \mathbf{0}, \mathbf{0})\) and \((\mathbf{0},-\mathbf{2}, \mathbf{0})\) ?

1 \(\frac{1}{2}\) square unit
2 1 square unit
3 2 square units
4 4 square units
Matrix and Determinant

79174 The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is

1 \(\mathrm{R}\)
2 \(\left\{(2 \mathrm{k}+1) \frac{\pi}{2}, \mathrm{k} \in \mathrm{Z}\right\}\)
3 \(\{\mathrm{k} \pi, \mathrm{k} \in \mathrm{Z}\}\)
4 \(\left\{\mathrm{k} \pi+\frac{\pi}{4}, \mathrm{k} \in \mathrm{Z}\right\}\)
Matrix and Determinant

79175 If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is

1 \(\mathrm{m}^{9}\)
2 \(\mathrm{m}^{2}\)
3 \(\mathrm{m}^{3}\)
4 none of these
Matrix and Determinant

79176 If \(f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 3 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|\), then
\(\boldsymbol{F}(\mathbf{1}) \boldsymbol{f ( 3 )}+\boldsymbol{f ( 5 )}+\boldsymbol{f ( 1 )}\) is equal to

1 \(\mathrm{f}(1)\)
2 \(\mathrm{f}(3)\)
3 \(f(1)+f(3)\)
4 \(\mathrm{f}(1)+\mathrm{f}(5)\)
Matrix and Determinant

79173 What is the area of the triangle with vertices at \((\mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{2}, \mathbf{0}, \mathbf{0})\) and \((\mathbf{0},-\mathbf{2}, \mathbf{0})\) ?

1 \(\frac{1}{2}\) square unit
2 1 square unit
3 2 square units
4 4 square units
Matrix and Determinant

79174 The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is

1 \(\mathrm{R}\)
2 \(\left\{(2 \mathrm{k}+1) \frac{\pi}{2}, \mathrm{k} \in \mathrm{Z}\right\}\)
3 \(\{\mathrm{k} \pi, \mathrm{k} \in \mathrm{Z}\}\)
4 \(\left\{\mathrm{k} \pi+\frac{\pi}{4}, \mathrm{k} \in \mathrm{Z}\right\}\)
Matrix and Determinant

79175 If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is

1 \(\mathrm{m}^{9}\)
2 \(\mathrm{m}^{2}\)
3 \(\mathrm{m}^{3}\)
4 none of these
Matrix and Determinant

79176 If \(f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 3 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|\), then
\(\boldsymbol{F}(\mathbf{1}) \boldsymbol{f ( 3 )}+\boldsymbol{f ( 5 )}+\boldsymbol{f ( 1 )}\) is equal to

1 \(\mathrm{f}(1)\)
2 \(\mathrm{f}(3)\)
3 \(f(1)+f(3)\)
4 \(\mathrm{f}(1)+\mathrm{f}(5)\)
Matrix and Determinant

79173 What is the area of the triangle with vertices at \((\mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{2}, \mathbf{0}, \mathbf{0})\) and \((\mathbf{0},-\mathbf{2}, \mathbf{0})\) ?

1 \(\frac{1}{2}\) square unit
2 1 square unit
3 2 square units
4 4 square units
Matrix and Determinant

79174 The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is

1 \(\mathrm{R}\)
2 \(\left\{(2 \mathrm{k}+1) \frac{\pi}{2}, \mathrm{k} \in \mathrm{Z}\right\}\)
3 \(\{\mathrm{k} \pi, \mathrm{k} \in \mathrm{Z}\}\)
4 \(\left\{\mathrm{k} \pi+\frac{\pi}{4}, \mathrm{k} \in \mathrm{Z}\right\}\)
Matrix and Determinant

79175 If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is

1 \(\mathrm{m}^{9}\)
2 \(\mathrm{m}^{2}\)
3 \(\mathrm{m}^{3}\)
4 none of these
Matrix and Determinant

79176 If \(f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 3 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|\), then
\(\boldsymbol{F}(\mathbf{1}) \boldsymbol{f ( 3 )}+\boldsymbol{f ( 5 )}+\boldsymbol{f ( 1 )}\) is equal to

1 \(\mathrm{f}(1)\)
2 \(\mathrm{f}(3)\)
3 \(f(1)+f(3)\)
4 \(\mathrm{f}(1)+\mathrm{f}(5)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79173 What is the area of the triangle with vertices at \((\mathbf{0}, \mathbf{0}, \mathbf{0}),(\mathbf{2}, \mathbf{0}, \mathbf{0})\) and \((\mathbf{0},-\mathbf{2}, \mathbf{0})\) ?

1 \(\frac{1}{2}\) square unit
2 1 square unit
3 2 square units
4 4 square units
Matrix and Determinant

79174 The set of all values of \(t \in R\), for which the matrix
\(\left[\begin{array}{ccc}e^{t} & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\ e^{t} & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\ e^{t} & e^{-t} \cos t & e^{-1} \sin t\end{array}\right]\) is
invertible, is

1 \(\mathrm{R}\)
2 \(\left\{(2 \mathrm{k}+1) \frac{\pi}{2}, \mathrm{k} \in \mathrm{Z}\right\}\)
3 \(\{\mathrm{k} \pi, \mathrm{k} \in \mathrm{Z}\}\)
4 \(\left\{\mathrm{k} \pi+\frac{\pi}{4}, \mathrm{k} \in \mathrm{Z}\right\}\)
Matrix and Determinant

79175 If \(y=\sin m x\), then the value of the determinant
\(\left|\begin{array}{lll}y^{\prime} & \mathbf{y}_{1} & \mathbf{y}_{2} \\ \mathbf{y}_{3} & \mathbf{y}_{4} & \mathbf{y}_{5} \\ \mathbf{y}_{6} & \mathbf{y}_{7} & \mathbf{y}_{8}\end{array}\right|\) where \(\mathbf{y}_{\mathbf{n}}=\frac{\mathbf{d}^{\mathrm{n}} \mathbf{y}}{\mathbf{d x}^{\mathbf{n}}}\) is

1 \(\mathrm{m}^{9}\)
2 \(\mathrm{m}^{2}\)
3 \(\mathrm{m}^{3}\)
4 none of these
Matrix and Determinant

79176 If \(f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 3 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|\), then
\(\boldsymbol{F}(\mathbf{1}) \boldsymbol{f ( 3 )}+\boldsymbol{f ( 5 )}+\boldsymbol{f ( 1 )}\) is equal to

1 \(\mathrm{f}(1)\)
2 \(\mathrm{f}(3)\)
3 \(f(1)+f(3)\)
4 \(\mathrm{f}(1)+\mathrm{f}(5)\)