Determinants in 2-D
Matrix and Determinant

79160 If \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right| ; 0 \leq \theta<2 \pi\), then

1 \(\Delta=0\)
2 \(\Delta \in(0, \infty)\)
3 \(\Delta \in[-1,2]\)
4 \(\Delta \in[2,4]\)
Matrix and Determinant

79161 \(\log \mathrm{e}^{2} \log \mathrm{e}^{3} \quad \log \mathrm{e}^{4} \quad\) is equal to
\(\log \mathrm{e}^{3} \log \mathrm{e}^{4} \log \mathrm{e}^{5}\)

1 0
2 1
3 \(4 \log \mathrm{e}\)
4 \(5 \log \mathrm{e}\)
Matrix and Determinant

79162 Let \(a, b, c\) be positive and not all are equal, the value of the determinant \(\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\) is

1 \(+\mathrm{ve}\)
2 -ve
3 zero
4 none of these
Matrix and Determinant

79163 If \(\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360\), then the value of \(\lambda\) is

1 -1
2 -2
3 -3
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79160 If \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right| ; 0 \leq \theta<2 \pi\), then

1 \(\Delta=0\)
2 \(\Delta \in(0, \infty)\)
3 \(\Delta \in[-1,2]\)
4 \(\Delta \in[2,4]\)
Matrix and Determinant

79161 \(\log \mathrm{e}^{2} \log \mathrm{e}^{3} \quad \log \mathrm{e}^{4} \quad\) is equal to
\(\log \mathrm{e}^{3} \log \mathrm{e}^{4} \log \mathrm{e}^{5}\)

1 0
2 1
3 \(4 \log \mathrm{e}\)
4 \(5 \log \mathrm{e}\)
Matrix and Determinant

79162 Let \(a, b, c\) be positive and not all are equal, the value of the determinant \(\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\) is

1 \(+\mathrm{ve}\)
2 -ve
3 zero
4 none of these
Matrix and Determinant

79163 If \(\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360\), then the value of \(\lambda\) is

1 -1
2 -2
3 -3
4 4
Matrix and Determinant

79160 If \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right| ; 0 \leq \theta<2 \pi\), then

1 \(\Delta=0\)
2 \(\Delta \in(0, \infty)\)
3 \(\Delta \in[-1,2]\)
4 \(\Delta \in[2,4]\)
Matrix and Determinant

79161 \(\log \mathrm{e}^{2} \log \mathrm{e}^{3} \quad \log \mathrm{e}^{4} \quad\) is equal to
\(\log \mathrm{e}^{3} \log \mathrm{e}^{4} \log \mathrm{e}^{5}\)

1 0
2 1
3 \(4 \log \mathrm{e}\)
4 \(5 \log \mathrm{e}\)
Matrix and Determinant

79162 Let \(a, b, c\) be positive and not all are equal, the value of the determinant \(\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\) is

1 \(+\mathrm{ve}\)
2 -ve
3 zero
4 none of these
Matrix and Determinant

79163 If \(\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360\), then the value of \(\lambda\) is

1 -1
2 -2
3 -3
4 4
Matrix and Determinant

79160 If \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right| ; 0 \leq \theta<2 \pi\), then

1 \(\Delta=0\)
2 \(\Delta \in(0, \infty)\)
3 \(\Delta \in[-1,2]\)
4 \(\Delta \in[2,4]\)
Matrix and Determinant

79161 \(\log \mathrm{e}^{2} \log \mathrm{e}^{3} \quad \log \mathrm{e}^{4} \quad\) is equal to
\(\log \mathrm{e}^{3} \log \mathrm{e}^{4} \log \mathrm{e}^{5}\)

1 0
2 1
3 \(4 \log \mathrm{e}\)
4 \(5 \log \mathrm{e}\)
Matrix and Determinant

79162 Let \(a, b, c\) be positive and not all are equal, the value of the determinant \(\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\) is

1 \(+\mathrm{ve}\)
2 -ve
3 zero
4 none of these
Matrix and Determinant

79163 If \(\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15\end{array}\right|=-360\), then the value of \(\lambda\) is

1 -1
2 -2
3 -3
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here