Determinants in 2-D
Matrix and Determinant

79156 \(\left|\begin{array}{lll}1 & a & a^2-b c \\ 1 & b & b^2-a c \\ 1 & c & c^2-a b\end{array}\right|\) is equal to:

1 0
2 \(a^{3}+b^{3}+c^{3}-3 a b c\)
3 \(3 a b c\)
4 \((a+b+c)^{3}\)
Matrix and Determinant

79157 If \(\alpha\) is a non-real cube root of -2 , then the value
of \(\left|\begin{array}{ccc}1 & 2 \alpha & 1 \\ \alpha^{2} & 1 & 3 \alpha^{2} \\ 2 & 2 \alpha & 1\end{array}\right|\), is

1 -11
2 -12
3 -13
4 0
Matrix and Determinant

79158 If \(f(x)=\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x}+\lambda\end{array}\right|\), then \(f(3 x)-f(x)=\)

1 \(3 x \lambda^{2}\)
2 \(4 x \lambda^{2}\)
3 \(6 x \lambda^{2}\)
4 \(x \lambda^{2}\)
Matrix and Determinant

79159 If \(2 x+1 \quad 2+x^{2} \quad x^{3}-3\)
\(\begin{array}{lll}x-3 & x^{2}+4 \quad 3 x\end{array}\)
\(=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\mathbf{a}_{2} \mathbf{x}^{2}+\ldots .+\mathbf{a}_{7} \mathbf{x}^{7}\), Then the value of \(a_{0}\) is

1 25
2 24
3 23
4 None of the above
Matrix and Determinant

79156 \(\left|\begin{array}{lll}1 & a & a^2-b c \\ 1 & b & b^2-a c \\ 1 & c & c^2-a b\end{array}\right|\) is equal to:

1 0
2 \(a^{3}+b^{3}+c^{3}-3 a b c\)
3 \(3 a b c\)
4 \((a+b+c)^{3}\)
Matrix and Determinant

79157 If \(\alpha\) is a non-real cube root of -2 , then the value
of \(\left|\begin{array}{ccc}1 & 2 \alpha & 1 \\ \alpha^{2} & 1 & 3 \alpha^{2} \\ 2 & 2 \alpha & 1\end{array}\right|\), is

1 -11
2 -12
3 -13
4 0
Matrix and Determinant

79158 If \(f(x)=\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x}+\lambda\end{array}\right|\), then \(f(3 x)-f(x)=\)

1 \(3 x \lambda^{2}\)
2 \(4 x \lambda^{2}\)
3 \(6 x \lambda^{2}\)
4 \(x \lambda^{2}\)
Matrix and Determinant

79159 If \(2 x+1 \quad 2+x^{2} \quad x^{3}-3\)
\(\begin{array}{lll}x-3 & x^{2}+4 \quad 3 x\end{array}\)
\(=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\mathbf{a}_{2} \mathbf{x}^{2}+\ldots .+\mathbf{a}_{7} \mathbf{x}^{7}\), Then the value of \(a_{0}\) is

1 25
2 24
3 23
4 None of the above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79156 \(\left|\begin{array}{lll}1 & a & a^2-b c \\ 1 & b & b^2-a c \\ 1 & c & c^2-a b\end{array}\right|\) is equal to:

1 0
2 \(a^{3}+b^{3}+c^{3}-3 a b c\)
3 \(3 a b c\)
4 \((a+b+c)^{3}\)
Matrix and Determinant

79157 If \(\alpha\) is a non-real cube root of -2 , then the value
of \(\left|\begin{array}{ccc}1 & 2 \alpha & 1 \\ \alpha^{2} & 1 & 3 \alpha^{2} \\ 2 & 2 \alpha & 1\end{array}\right|\), is

1 -11
2 -12
3 -13
4 0
Matrix and Determinant

79158 If \(f(x)=\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x}+\lambda\end{array}\right|\), then \(f(3 x)-f(x)=\)

1 \(3 x \lambda^{2}\)
2 \(4 x \lambda^{2}\)
3 \(6 x \lambda^{2}\)
4 \(x \lambda^{2}\)
Matrix and Determinant

79159 If \(2 x+1 \quad 2+x^{2} \quad x^{3}-3\)
\(\begin{array}{lll}x-3 & x^{2}+4 \quad 3 x\end{array}\)
\(=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\mathbf{a}_{2} \mathbf{x}^{2}+\ldots .+\mathbf{a}_{7} \mathbf{x}^{7}\), Then the value of \(a_{0}\) is

1 25
2 24
3 23
4 None of the above
Matrix and Determinant

79156 \(\left|\begin{array}{lll}1 & a & a^2-b c \\ 1 & b & b^2-a c \\ 1 & c & c^2-a b\end{array}\right|\) is equal to:

1 0
2 \(a^{3}+b^{3}+c^{3}-3 a b c\)
3 \(3 a b c\)
4 \((a+b+c)^{3}\)
Matrix and Determinant

79157 If \(\alpha\) is a non-real cube root of -2 , then the value
of \(\left|\begin{array}{ccc}1 & 2 \alpha & 1 \\ \alpha^{2} & 1 & 3 \alpha^{2} \\ 2 & 2 \alpha & 1\end{array}\right|\), is

1 -11
2 -12
3 -13
4 0
Matrix and Determinant

79158 If \(f(x)=\left|\begin{array}{ccc}x+\lambda & x & x \\ x & x+\lambda & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x}+\lambda\end{array}\right|\), then \(f(3 x)-f(x)=\)

1 \(3 x \lambda^{2}\)
2 \(4 x \lambda^{2}\)
3 \(6 x \lambda^{2}\)
4 \(x \lambda^{2}\)
Matrix and Determinant

79159 If \(2 x+1 \quad 2+x^{2} \quad x^{3}-3\)
\(\begin{array}{lll}x-3 & x^{2}+4 \quad 3 x\end{array}\)
\(=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{x}+\mathbf{a}_{2} \mathbf{x}^{2}+\ldots .+\mathbf{a}_{7} \mathbf{x}^{7}\), Then the value of \(a_{0}\) is

1 25
2 24
3 23
4 None of the above