Explanation:
(B) : According to given summation,
Let \(\Delta=\left|\begin{array}{ccc}\frac{1}{a} & b c & a^{3} \\ \frac{1}{b} & c a & b^{3} \\ \frac{1}{c} & a b & c^{3}\end{array}\right|\)
Operating, \(\mathrm{R}_{1}{ }^{\frac{c}{c}} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, R_{3} \rightarrow \mathrm{cR}_{3}\), we get
\(\Delta=\frac{1}{a b c}\left|\begin{array}{ccc} 1 & a b c & a^{4} \\ 1 & a b c & b^{4} \\ 1 & a b c & c^{4} \end{array}\right|\)
Taking abc common from \(\mathrm{C}_{2}\), we get
\(\Delta=\frac{a b c}{a b c}\left|\begin{array}{lll}
1 & 1 & a^{4} \\ 1 & 1 & b^{4} \\ 1 & 1 & c^{4} \end{array}\right|\)
\(\Delta=0 \quad\left[\because \mathrm{C}_{1}\right.\) and \(\mathrm{C}_{2}\) are identical \(]\)