79131 The constant term in the expansion of|3x+12x−1x+25x−13x+2x+17x−23x+14x−1| is
(D) : We have,|3x+12x−1x+25x−13x+2x+17x−23x+14x−1|In order to find the constant term, putting x=0, we get|1−12−121−21−1|1(−2−1)+1(1+2)+2(−1+4)=−3+3+6=6So, the constant term is 6 .
79132 If x,y,z∈R, then the value of the determinantA=[(5x+5−x)2(5x−5−x)21(6x+6−x)2(6x−6−x)21(7x+7−x)2(7x−7−x)21] is
(D) : According to given summation,Let A=|(5x+5−x)2(5x−5−x)21(6x+6−x)2(6x−6−x)21(7x+7−x)2(7x−7−x)21|Operating C1→C1−C2, we get -A=|4(5x−5−x)214(6x−6−x)214(7x−7−x)21|⇒A=4|1(5x−5−x)211(6x−6−x)211(7x−7−x)21|Operating C1→C1−C3, we get -Hence, A=0
79134 If xyz are not equal and ≠0,≠1 the value of|logxlogylogzlog2xlog2ylog2zlog3xlog3ylog3z| is equal to
(C) : According to given summation,Δ=|logxlogylogzlog2xlog2ylog2zlog3xlog3ylog3z|Operating R2→R2−R1 and R3→R3−R1, we get -Δ=|logxlogylogzlog2log2log2log3log3log3|Taking out log2 and log3 from R2 and R3 respectively.Δ=(log2)(log3)|logxlogylogz111111|∴Δ=0
79136 If ax4+bx3+cx2+dx+e=|x3+3xx−1x+3x+1−2xx−4x−3x+43x|, then e=
(C) : According to given Summation,ax4+bx3+cx2+dx+e=|x3+3xx−1x+3x+1−2xx−4x−3x+43x|,Putting x=0 in both sides, we get -e=|0−1310−4−340|e=0(0)+16−(−1)(0−12)+3(4−0)e=0−12+12⇒e=0
79137 If |210021102| then |adjA|
(B) : We have, A=|210021102|If A is a matrix of order n,Then, |adjA|=|A|n−1Here, |A|=2(4−0)−1(0−1)+0(0−2)=9∴|adjA|=93−1=92=81