Determinants and their Properties
Matrix and Determinant

79103 If \(A\) is a square matrix of order 3 and \(\alpha\) is a real number, then determinant \([\alpha \mathrm{A}]\) is equal to

1 \(\alpha^{2}|\mathrm{~A}|\)
2 \(\alpha|\mathrm{A}|\)
3 \(\alpha^{3} \mid \mathrm{A}\)
4 None of these
Matrix and Determinant

79104 The value of the determinant \(\left|\begin{array}{lll}4 & 4^{2} & 4^{3} \\ 3 & 3^{2} & 3^{3} \\ 2 & 2^{2} & 2^{3}\end{array}\right|=\) is

1 52
2 -24
3 24
4 48
5 -48
Matrix and Determinant

79105 If \(\left|\begin{array}{ccc}1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x\end{array}\right|=0\), then the values of \(x\) are

1 \(5,-3\)
2 5,3
3 \(-5,3\)
4 2,3
5 \(-2,-3\)
Matrix and Determinant

79106 If \(M\) and \(N\) are square matrices of order 3 where \(\operatorname{det}(M)=2\) and \(\operatorname{det}(N)=3\), then \(\operatorname{det}(3 \mathrm{MN})\) is

1 27
2 81
3 162
4 324
5 121
Matrix and Determinant

79103 If \(A\) is a square matrix of order 3 and \(\alpha\) is a real number, then determinant \([\alpha \mathrm{A}]\) is equal to

1 \(\alpha^{2}|\mathrm{~A}|\)
2 \(\alpha|\mathrm{A}|\)
3 \(\alpha^{3} \mid \mathrm{A}\)
4 None of these
Matrix and Determinant

79104 The value of the determinant \(\left|\begin{array}{lll}4 & 4^{2} & 4^{3} \\ 3 & 3^{2} & 3^{3} \\ 2 & 2^{2} & 2^{3}\end{array}\right|=\) is

1 52
2 -24
3 24
4 48
5 -48
Matrix and Determinant

79105 If \(\left|\begin{array}{ccc}1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x\end{array}\right|=0\), then the values of \(x\) are

1 \(5,-3\)
2 5,3
3 \(-5,3\)
4 2,3
5 \(-2,-3\)
Matrix and Determinant

79106 If \(M\) and \(N\) are square matrices of order 3 where \(\operatorname{det}(M)=2\) and \(\operatorname{det}(N)=3\), then \(\operatorname{det}(3 \mathrm{MN})\) is

1 27
2 81
3 162
4 324
5 121
Matrix and Determinant

79103 If \(A\) is a square matrix of order 3 and \(\alpha\) is a real number, then determinant \([\alpha \mathrm{A}]\) is equal to

1 \(\alpha^{2}|\mathrm{~A}|\)
2 \(\alpha|\mathrm{A}|\)
3 \(\alpha^{3} \mid \mathrm{A}\)
4 None of these
Matrix and Determinant

79104 The value of the determinant \(\left|\begin{array}{lll}4 & 4^{2} & 4^{3} \\ 3 & 3^{2} & 3^{3} \\ 2 & 2^{2} & 2^{3}\end{array}\right|=\) is

1 52
2 -24
3 24
4 48
5 -48
Matrix and Determinant

79105 If \(\left|\begin{array}{ccc}1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x\end{array}\right|=0\), then the values of \(x\) are

1 \(5,-3\)
2 5,3
3 \(-5,3\)
4 2,3
5 \(-2,-3\)
Matrix and Determinant

79106 If \(M\) and \(N\) are square matrices of order 3 where \(\operatorname{det}(M)=2\) and \(\operatorname{det}(N)=3\), then \(\operatorname{det}(3 \mathrm{MN})\) is

1 27
2 81
3 162
4 324
5 121
Matrix and Determinant

79103 If \(A\) is a square matrix of order 3 and \(\alpha\) is a real number, then determinant \([\alpha \mathrm{A}]\) is equal to

1 \(\alpha^{2}|\mathrm{~A}|\)
2 \(\alpha|\mathrm{A}|\)
3 \(\alpha^{3} \mid \mathrm{A}\)
4 None of these
Matrix and Determinant

79104 The value of the determinant \(\left|\begin{array}{lll}4 & 4^{2} & 4^{3} \\ 3 & 3^{2} & 3^{3} \\ 2 & 2^{2} & 2^{3}\end{array}\right|=\) is

1 52
2 -24
3 24
4 48
5 -48
Matrix and Determinant

79105 If \(\left|\begin{array}{ccc}1 & 2 & 1 \\ 0 & x & -3 \\ 2 & -1 & x\end{array}\right|=0\), then the values of \(x\) are

1 \(5,-3\)
2 5,3
3 \(-5,3\)
4 2,3
5 \(-2,-3\)
Matrix and Determinant

79106 If \(M\) and \(N\) are square matrices of order 3 where \(\operatorname{det}(M)=2\) and \(\operatorname{det}(N)=3\), then \(\operatorname{det}(3 \mathrm{MN})\) is

1 27
2 81
3 162
4 324
5 121