79053
Let \(a, b, c\) be such that \(b+c \neq 0\) and
\(\left|\begin{array}{ccc} \mathbf{a} & \mathbf{a}+\mathbf{1} & \mathbf{a}-\mathbf{1} \\ -\mathbf{b} & \mathbf{b}+\mathbf{1} & \mathbf{b}-\mathbf{1} \\ \mathbf{c} & \mathbf{c}-\mathbf{1} & \mathbf{c}+\mathbf{1} \end{array}\right|\)\(+\left|\begin{array}{ccc} \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}-\mathbf{1} \\ \mathbf{a - 1} & \mathbf{b}-\mathbf{1} & \mathbf{c}+\mathbf{1} \\ (-\mathbf{1})^{\mathrm{n}+2} \mathbf{a} & (-\mathbf{- 1})^{\mathrm{n}-1} \mathbf{b} & (-\mathbf{1})^{\mathrm{n}} \mathbf{c} \end{array}\right|=\mathbf{0},\)
then the value of ' \(n\) ' is
79053
Let \(a, b, c\) be such that \(b+c \neq 0\) and
\(\left|\begin{array}{ccc} \mathbf{a} & \mathbf{a}+\mathbf{1} & \mathbf{a}-\mathbf{1} \\ -\mathbf{b} & \mathbf{b}+\mathbf{1} & \mathbf{b}-\mathbf{1} \\ \mathbf{c} & \mathbf{c}-\mathbf{1} & \mathbf{c}+\mathbf{1} \end{array}\right|\)\(+\left|\begin{array}{ccc} \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}-\mathbf{1} \\ \mathbf{a - 1} & \mathbf{b}-\mathbf{1} & \mathbf{c}+\mathbf{1} \\ (-\mathbf{1})^{\mathrm{n}+2} \mathbf{a} & (-\mathbf{- 1})^{\mathrm{n}-1} \mathbf{b} & (-\mathbf{1})^{\mathrm{n}} \mathbf{c} \end{array}\right|=\mathbf{0},\)
then the value of ' \(n\) ' is
79053
Let \(a, b, c\) be such that \(b+c \neq 0\) and
\(\left|\begin{array}{ccc} \mathbf{a} & \mathbf{a}+\mathbf{1} & \mathbf{a}-\mathbf{1} \\ -\mathbf{b} & \mathbf{b}+\mathbf{1} & \mathbf{b}-\mathbf{1} \\ \mathbf{c} & \mathbf{c}-\mathbf{1} & \mathbf{c}+\mathbf{1} \end{array}\right|\)\(+\left|\begin{array}{ccc} \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}-\mathbf{1} \\ \mathbf{a - 1} & \mathbf{b}-\mathbf{1} & \mathbf{c}+\mathbf{1} \\ (-\mathbf{1})^{\mathrm{n}+2} \mathbf{a} & (-\mathbf{- 1})^{\mathrm{n}-1} \mathbf{b} & (-\mathbf{1})^{\mathrm{n}} \mathbf{c} \end{array}\right|=\mathbf{0},\)
then the value of ' \(n\) ' is
79053
Let \(a, b, c\) be such that \(b+c \neq 0\) and
\(\left|\begin{array}{ccc} \mathbf{a} & \mathbf{a}+\mathbf{1} & \mathbf{a}-\mathbf{1} \\ -\mathbf{b} & \mathbf{b}+\mathbf{1} & \mathbf{b}-\mathbf{1} \\ \mathbf{c} & \mathbf{c}-\mathbf{1} & \mathbf{c}+\mathbf{1} \end{array}\right|\)\(+\left|\begin{array}{ccc} \mathbf{a}+\mathbf{1} & \mathbf{b}+\mathbf{1} & \mathbf{c}-\mathbf{1} \\ \mathbf{a - 1} & \mathbf{b}-\mathbf{1} & \mathbf{c}+\mathbf{1} \\ (-\mathbf{1})^{\mathrm{n}+2} \mathbf{a} & (-\mathbf{- 1})^{\mathrm{n}-1} \mathbf{b} & (-\mathbf{1})^{\mathrm{n}} \mathbf{c} \end{array}\right|=\mathbf{0},\)
then the value of ' \(n\) ' is