78999 The value of |441442443445446447449450451| is :
(B) : We have,|441442443445446447449450451|Applying - c3→c3−c2We get-c2→c2−c1|441114451145011|=0[∵ Two column are identical ]
79000 If x3−2x2−9x+18=0 and A=|1254x6789| thenthe maximum value of A is
(A) : Given,f(x)=x3−2x2+9x+18=0x2(x−2)−9(x−2)=0(x−2)(x2−9)=0(x−2)(x+3)(x−3)=0x=2,−3,3A=|1234x6789|[R2:R2−4R1R3:R3−7R1]=|1230x−86−1208−149−21|A=|1230x−8−60−6−12|=3|1210x−8−21−6−4|=6|1210x−8−20−32|=6(−2x+10)=−12x+60A=−12x+60of x=2 A=36x=3 A=24x=−3 A=96(A) max=96
79001 If A and B are matrices of order 3 and |A|=5, |B|=3, then |3AB| is
(B) : We have,|A|=5 and |B|=3We know that,|KA|=Kn|A| (where, n= order of matrix) =27×5×3|3AB|=405∴|3AB|=33| A||B|
79002 The system of linear equations x+y+z=6, x+2y+3z=10 and x+2y+az=b has no solution when
(A) : We have,x+y+z=6x+2y+3z=10x+2y+az=b}Equation (i) will have no solution when D=0 and at least one of D1,D2 or D3 is non-zero.Here,D=|11112312a|=01(2a−6)−1(a−3)+1(2−2)=02a−6−a+3=0a−3=0a=3Let, D1≠0, then -|6111023b2a|≠06(2a−6)−10(a−2)+b(3−2)≠02a+b−16≠0b−10≠0b≠10
79003 If aex+bey=c;pex+qey=d andΔ1=|abpq|;Δ2=|cbdq|;Δ3=|acpd| the value of (x,y)is
(B) : We have,aex+bey=c and pex+qey=dHere, by determinant method,ex=Δ2Δ1⇒x=logΔ2Δ1Also, ey=Δ3Δ1⇒y=logΔ3Δ1∴(logΔ2Δ1,logΔ3Δ1)