Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78985 If \(A=\left|\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\), then the value of \(|A \| \operatorname{adj}(\mathbf{A})|\) is

1 \(a^{3}\)
2 \(a^{6}\)
3 \(a^{9}\)
4 \(\mathrm{a}^{27}\)
Matrix and Determinant

78986 If \(A=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(-\frac{1}{8}\left[\begin{array}{cc}3 & 1 \\ -2 & 2\end{array}\right]\)
2 \(-\frac{1}{8}\left[\begin{array}{cc}-2 & -3 \\ -2 & 1\end{array}\right]\)
3 \(\frac{1}{8}\left[\begin{array}{cc}-1 & -3 \\ -2 & 2\end{array}\right]\)
4 None of these
Matrix and Determinant

78988 For any \(2 \times 2\) matrix \(A\), if \(A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\),
then \(|A|\) i.e., \(\operatorname{det} A\) is equal to :

1 20
2 100
3 10
4 0
Matrix and Determinant

78989 If \(A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) then adjoint of \(A\) is :

1 \(\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) (d)
4 \(\left[\begin{array}{ll}-1 & -3 \\ -3 & 10\end{array}\right]\)
Matrix and Determinant

78990 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=\lambda A\). Then the value of \(\lambda\) is

1 \(\frac{1}{17}\)
2 \(\frac{1}{18}\)
3 \(\frac{1}{19}\)
4 \(\frac{1}{21}\)
Matrix and Determinant

78985 If \(A=\left|\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\), then the value of \(|A \| \operatorname{adj}(\mathbf{A})|\) is

1 \(a^{3}\)
2 \(a^{6}\)
3 \(a^{9}\)
4 \(\mathrm{a}^{27}\)
Matrix and Determinant

78986 If \(A=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(-\frac{1}{8}\left[\begin{array}{cc}3 & 1 \\ -2 & 2\end{array}\right]\)
2 \(-\frac{1}{8}\left[\begin{array}{cc}-2 & -3 \\ -2 & 1\end{array}\right]\)
3 \(\frac{1}{8}\left[\begin{array}{cc}-1 & -3 \\ -2 & 2\end{array}\right]\)
4 None of these
Matrix and Determinant

78988 For any \(2 \times 2\) matrix \(A\), if \(A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\),
then \(|A|\) i.e., \(\operatorname{det} A\) is equal to :

1 20
2 100
3 10
4 0
Matrix and Determinant

78989 If \(A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) then adjoint of \(A\) is :

1 \(\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) (d)
4 \(\left[\begin{array}{ll}-1 & -3 \\ -3 & 10\end{array}\right]\)
Matrix and Determinant

78990 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=\lambda A\). Then the value of \(\lambda\) is

1 \(\frac{1}{17}\)
2 \(\frac{1}{18}\)
3 \(\frac{1}{19}\)
4 \(\frac{1}{21}\)
Matrix and Determinant

78985 If \(A=\left|\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\), then the value of \(|A \| \operatorname{adj}(\mathbf{A})|\) is

1 \(a^{3}\)
2 \(a^{6}\)
3 \(a^{9}\)
4 \(\mathrm{a}^{27}\)
Matrix and Determinant

78986 If \(A=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(-\frac{1}{8}\left[\begin{array}{cc}3 & 1 \\ -2 & 2\end{array}\right]\)
2 \(-\frac{1}{8}\left[\begin{array}{cc}-2 & -3 \\ -2 & 1\end{array}\right]\)
3 \(\frac{1}{8}\left[\begin{array}{cc}-1 & -3 \\ -2 & 2\end{array}\right]\)
4 None of these
Matrix and Determinant

78988 For any \(2 \times 2\) matrix \(A\), if \(A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\),
then \(|A|\) i.e., \(\operatorname{det} A\) is equal to :

1 20
2 100
3 10
4 0
Matrix and Determinant

78989 If \(A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) then adjoint of \(A\) is :

1 \(\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) (d)
4 \(\left[\begin{array}{ll}-1 & -3 \\ -3 & 10\end{array}\right]\)
Matrix and Determinant

78990 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=\lambda A\). Then the value of \(\lambda\) is

1 \(\frac{1}{17}\)
2 \(\frac{1}{18}\)
3 \(\frac{1}{19}\)
4 \(\frac{1}{21}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78985 If \(A=\left|\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\), then the value of \(|A \| \operatorname{adj}(\mathbf{A})|\) is

1 \(a^{3}\)
2 \(a^{6}\)
3 \(a^{9}\)
4 \(\mathrm{a}^{27}\)
Matrix and Determinant

78986 If \(A=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(-\frac{1}{8}\left[\begin{array}{cc}3 & 1 \\ -2 & 2\end{array}\right]\)
2 \(-\frac{1}{8}\left[\begin{array}{cc}-2 & -3 \\ -2 & 1\end{array}\right]\)
3 \(\frac{1}{8}\left[\begin{array}{cc}-1 & -3 \\ -2 & 2\end{array}\right]\)
4 None of these
Matrix and Determinant

78988 For any \(2 \times 2\) matrix \(A\), if \(A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\),
then \(|A|\) i.e., \(\operatorname{det} A\) is equal to :

1 20
2 100
3 10
4 0
Matrix and Determinant

78989 If \(A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) then adjoint of \(A\) is :

1 \(\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) (d)
4 \(\left[\begin{array}{ll}-1 & -3 \\ -3 & 10\end{array}\right]\)
Matrix and Determinant

78990 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=\lambda A\). Then the value of \(\lambda\) is

1 \(\frac{1}{17}\)
2 \(\frac{1}{18}\)
3 \(\frac{1}{19}\)
4 \(\frac{1}{21}\)
Matrix and Determinant

78985 If \(A=\left|\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\), then the value of \(|A \| \operatorname{adj}(\mathbf{A})|\) is

1 \(a^{3}\)
2 \(a^{6}\)
3 \(a^{9}\)
4 \(\mathrm{a}^{27}\)
Matrix and Determinant

78986 If \(A=\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(-\frac{1}{8}\left[\begin{array}{cc}3 & 1 \\ -2 & 2\end{array}\right]\)
2 \(-\frac{1}{8}\left[\begin{array}{cc}-2 & -3 \\ -2 & 1\end{array}\right]\)
3 \(\frac{1}{8}\left[\begin{array}{cc}-1 & -3 \\ -2 & 2\end{array}\right]\)
4 None of these
Matrix and Determinant

78988 For any \(2 \times 2\) matrix \(A\), if \(A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\),
then \(|A|\) i.e., \(\operatorname{det} A\) is equal to :

1 20
2 100
3 10
4 0
Matrix and Determinant

78989 If \(A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) then adjoint of \(A\) is :

1 \(\left[\begin{array}{cc}10 & 3 \\ 3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}10 & -3 \\ -3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]\) (d)
4 \(\left[\begin{array}{ll}-1 & -3 \\ -3 & 10\end{array}\right]\)
Matrix and Determinant

78990 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=\lambda A\). Then the value of \(\lambda\) is

1 \(\frac{1}{17}\)
2 \(\frac{1}{18}\)
3 \(\frac{1}{19}\)
4 \(\frac{1}{21}\)