Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78958 The symmetric part of the matrix
\(A=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{array}\right] \text { is }\)

1 \(\left[\begin{array}{ccc}0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0\end{array}\right]\)
2 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
3 \(\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0\end{array}\right]\)
4 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
Matrix and Determinant

78959 If the determinant of the adjoint of a (real) matrix of order 3 is 25 , then the determinant of the inverse of the matrix is

1 0.2
2 \(\pm 5\)
3 \(\frac{1}{\sqrt[5]{625}}\)
4 \(\pm 0.2\)
Matrix and Determinant

78960 The characteristic equation of a matrix \(A\) is \(\lambda^{3}-5 \lambda^{2}-3 \lambda+2 I=0\), then \(|\operatorname{adj}(\mathbf{A})|=\)

1 4
2 9
3 25
4 \(\frac{1}{2}\)
Matrix and Determinant

78962 If \(A\) is a \(3 \times 3\) nonsingular matrix and if \(|A|=3\), then \(\left|(\mathbf{2 A})^{-1}\right|=\)

1 3
2 24
3 \(\frac{1}{24}\)
4 \(\frac{1}{3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78958 The symmetric part of the matrix
\(A=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{array}\right] \text { is }\)

1 \(\left[\begin{array}{ccc}0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0\end{array}\right]\)
2 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
3 \(\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0\end{array}\right]\)
4 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
Matrix and Determinant

78959 If the determinant of the adjoint of a (real) matrix of order 3 is 25 , then the determinant of the inverse of the matrix is

1 0.2
2 \(\pm 5\)
3 \(\frac{1}{\sqrt[5]{625}}\)
4 \(\pm 0.2\)
Matrix and Determinant

78960 The characteristic equation of a matrix \(A\) is \(\lambda^{3}-5 \lambda^{2}-3 \lambda+2 I=0\), then \(|\operatorname{adj}(\mathbf{A})|=\)

1 4
2 9
3 25
4 \(\frac{1}{2}\)
Matrix and Determinant

78962 If \(A\) is a \(3 \times 3\) nonsingular matrix and if \(|A|=3\), then \(\left|(\mathbf{2 A})^{-1}\right|=\)

1 3
2 24
3 \(\frac{1}{24}\)
4 \(\frac{1}{3}\)
Matrix and Determinant

78958 The symmetric part of the matrix
\(A=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{array}\right] \text { is }\)

1 \(\left[\begin{array}{ccc}0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0\end{array}\right]\)
2 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
3 \(\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0\end{array}\right]\)
4 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
Matrix and Determinant

78959 If the determinant of the adjoint of a (real) matrix of order 3 is 25 , then the determinant of the inverse of the matrix is

1 0.2
2 \(\pm 5\)
3 \(\frac{1}{\sqrt[5]{625}}\)
4 \(\pm 0.2\)
Matrix and Determinant

78960 The characteristic equation of a matrix \(A\) is \(\lambda^{3}-5 \lambda^{2}-3 \lambda+2 I=0\), then \(|\operatorname{adj}(\mathbf{A})|=\)

1 4
2 9
3 25
4 \(\frac{1}{2}\)
Matrix and Determinant

78962 If \(A\) is a \(3 \times 3\) nonsingular matrix and if \(|A|=3\), then \(\left|(\mathbf{2 A})^{-1}\right|=\)

1 3
2 24
3 \(\frac{1}{24}\)
4 \(\frac{1}{3}\)
Matrix and Determinant

78958 The symmetric part of the matrix
\(A=\left[\begin{array}{ccc} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{array}\right] \text { is }\)

1 \(\left[\begin{array}{ccc}0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0\end{array}\right]\)
2 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
3 \(\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0\end{array}\right]\)
4 \(\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{array}\right]\)
Matrix and Determinant

78959 If the determinant of the adjoint of a (real) matrix of order 3 is 25 , then the determinant of the inverse of the matrix is

1 0.2
2 \(\pm 5\)
3 \(\frac{1}{\sqrt[5]{625}}\)
4 \(\pm 0.2\)
Matrix and Determinant

78960 The characteristic equation of a matrix \(A\) is \(\lambda^{3}-5 \lambda^{2}-3 \lambda+2 I=0\), then \(|\operatorname{adj}(\mathbf{A})|=\)

1 4
2 9
3 25
4 \(\frac{1}{2}\)
Matrix and Determinant

78962 If \(A\) is a \(3 \times 3\) nonsingular matrix and if \(|A|=3\), then \(\left|(\mathbf{2 A})^{-1}\right|=\)

1 3
2 24
3 \(\frac{1}{24}\)
4 \(\frac{1}{3}\)