Adjoint and Inverse of Matrices
Matrix and Determinant

78912 Let \(A\) and \(B\) be two \(3 \times 3\) real matrices such that \(\left(A^{2}-B^{2}\right)\) is invertible matrix. If \(A^{5}=B^{5}\) and \(A^{3} B^{2}=A^{2} B^{3}\), then the value of the determinant of the matrix \(A^{3}+B^{3}\) is equal to

1 2
2 4
3 1
4 0
Matrix and Determinant

78913 If \(A\) is a square matrix of order \(n \times n\) and \(K\) is a scalar, then adj (KA) is equal to

1 \(\mathrm{K} \operatorname{adj} \mathrm{A}\)
2 \(\mathrm{K}^{\mathrm{n}}\) adj \(\mathrm{A}\)
3 \(\mathrm{K}^{\mathrm{n}-1}\) adj \(\mathrm{A}\)
4 \(\mathrm{K}^{\mathrm{n}+1}\) adj \(\mathrm{A}\)
Matrix and Determinant

78914 Let \(A\) be a matrix of order \(3 \times 3\) and \(\operatorname{det}(A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \mathrm{adj}\left(\mathrm{A}^{3}\right)\right)\right.\) ) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78915 Evaluate \(A^{2}+2 I\) if \(\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\)

1 \(2 \mathrm{~A}\)
2 \(3 \mathrm{~A}\)
3 \(4 \mathrm{~A}\)
4 \(5 \mathrm{~A}\)
Matrix and Determinant

78916 If \(A \cdot \operatorname{adj}(A)=0\), then \(|A|\) is

1 0
2 \(\frac{1}{|\operatorname{adj} \mathrm{A}|}\)
3 1
4 -1
Matrix and Determinant

78912 Let \(A\) and \(B\) be two \(3 \times 3\) real matrices such that \(\left(A^{2}-B^{2}\right)\) is invertible matrix. If \(A^{5}=B^{5}\) and \(A^{3} B^{2}=A^{2} B^{3}\), then the value of the determinant of the matrix \(A^{3}+B^{3}\) is equal to

1 2
2 4
3 1
4 0
Matrix and Determinant

78913 If \(A\) is a square matrix of order \(n \times n\) and \(K\) is a scalar, then adj (KA) is equal to

1 \(\mathrm{K} \operatorname{adj} \mathrm{A}\)
2 \(\mathrm{K}^{\mathrm{n}}\) adj \(\mathrm{A}\)
3 \(\mathrm{K}^{\mathrm{n}-1}\) adj \(\mathrm{A}\)
4 \(\mathrm{K}^{\mathrm{n}+1}\) adj \(\mathrm{A}\)
Matrix and Determinant

78914 Let \(A\) be a matrix of order \(3 \times 3\) and \(\operatorname{det}(A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \mathrm{adj}\left(\mathrm{A}^{3}\right)\right)\right.\) ) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78915 Evaluate \(A^{2}+2 I\) if \(\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\)

1 \(2 \mathrm{~A}\)
2 \(3 \mathrm{~A}\)
3 \(4 \mathrm{~A}\)
4 \(5 \mathrm{~A}\)
Matrix and Determinant

78916 If \(A \cdot \operatorname{adj}(A)=0\), then \(|A|\) is

1 0
2 \(\frac{1}{|\operatorname{adj} \mathrm{A}|}\)
3 1
4 -1
Matrix and Determinant

78912 Let \(A\) and \(B\) be two \(3 \times 3\) real matrices such that \(\left(A^{2}-B^{2}\right)\) is invertible matrix. If \(A^{5}=B^{5}\) and \(A^{3} B^{2}=A^{2} B^{3}\), then the value of the determinant of the matrix \(A^{3}+B^{3}\) is equal to

1 2
2 4
3 1
4 0
Matrix and Determinant

78913 If \(A\) is a square matrix of order \(n \times n\) and \(K\) is a scalar, then adj (KA) is equal to

1 \(\mathrm{K} \operatorname{adj} \mathrm{A}\)
2 \(\mathrm{K}^{\mathrm{n}}\) adj \(\mathrm{A}\)
3 \(\mathrm{K}^{\mathrm{n}-1}\) adj \(\mathrm{A}\)
4 \(\mathrm{K}^{\mathrm{n}+1}\) adj \(\mathrm{A}\)
Matrix and Determinant

78914 Let \(A\) be a matrix of order \(3 \times 3\) and \(\operatorname{det}(A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \mathrm{adj}\left(\mathrm{A}^{3}\right)\right)\right.\) ) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78915 Evaluate \(A^{2}+2 I\) if \(\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\)

1 \(2 \mathrm{~A}\)
2 \(3 \mathrm{~A}\)
3 \(4 \mathrm{~A}\)
4 \(5 \mathrm{~A}\)
Matrix and Determinant

78916 If \(A \cdot \operatorname{adj}(A)=0\), then \(|A|\) is

1 0
2 \(\frac{1}{|\operatorname{adj} \mathrm{A}|}\)
3 1
4 -1
Matrix and Determinant

78912 Let \(A\) and \(B\) be two \(3 \times 3\) real matrices such that \(\left(A^{2}-B^{2}\right)\) is invertible matrix. If \(A^{5}=B^{5}\) and \(A^{3} B^{2}=A^{2} B^{3}\), then the value of the determinant of the matrix \(A^{3}+B^{3}\) is equal to

1 2
2 4
3 1
4 0
Matrix and Determinant

78913 If \(A\) is a square matrix of order \(n \times n\) and \(K\) is a scalar, then adj (KA) is equal to

1 \(\mathrm{K} \operatorname{adj} \mathrm{A}\)
2 \(\mathrm{K}^{\mathrm{n}}\) adj \(\mathrm{A}\)
3 \(\mathrm{K}^{\mathrm{n}-1}\) adj \(\mathrm{A}\)
4 \(\mathrm{K}^{\mathrm{n}+1}\) adj \(\mathrm{A}\)
Matrix and Determinant

78914 Let \(A\) be a matrix of order \(3 \times 3\) and \(\operatorname{det}(A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \mathrm{adj}\left(\mathrm{A}^{3}\right)\right)\right.\) ) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78915 Evaluate \(A^{2}+2 I\) if \(\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\)

1 \(2 \mathrm{~A}\)
2 \(3 \mathrm{~A}\)
3 \(4 \mathrm{~A}\)
4 \(5 \mathrm{~A}\)
Matrix and Determinant

78916 If \(A \cdot \operatorname{adj}(A)=0\), then \(|A|\) is

1 0
2 \(\frac{1}{|\operatorname{adj} \mathrm{A}|}\)
3 1
4 -1
Matrix and Determinant

78912 Let \(A\) and \(B\) be two \(3 \times 3\) real matrices such that \(\left(A^{2}-B^{2}\right)\) is invertible matrix. If \(A^{5}=B^{5}\) and \(A^{3} B^{2}=A^{2} B^{3}\), then the value of the determinant of the matrix \(A^{3}+B^{3}\) is equal to

1 2
2 4
3 1
4 0
Matrix and Determinant

78913 If \(A\) is a square matrix of order \(n \times n\) and \(K\) is a scalar, then adj (KA) is equal to

1 \(\mathrm{K} \operatorname{adj} \mathrm{A}\)
2 \(\mathrm{K}^{\mathrm{n}}\) adj \(\mathrm{A}\)
3 \(\mathrm{K}^{\mathrm{n}-1}\) adj \(\mathrm{A}\)
4 \(\mathrm{K}^{\mathrm{n}+1}\) adj \(\mathrm{A}\)
Matrix and Determinant

78914 Let \(A\) be a matrix of order \(3 \times 3\) and \(\operatorname{det}(A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \mathrm{adj}\left(\mathrm{A}^{3}\right)\right)\right.\) ) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78915 Evaluate \(A^{2}+2 I\) if \(\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\)

1 \(2 \mathrm{~A}\)
2 \(3 \mathrm{~A}\)
3 \(4 \mathrm{~A}\)
4 \(5 \mathrm{~A}\)
Matrix and Determinant

78916 If \(A \cdot \operatorname{adj}(A)=0\), then \(|A|\) is

1 0
2 \(\frac{1}{|\operatorname{adj} \mathrm{A}|}\)
3 1
4 -1