Adjoint and Inverse of Matrices
Matrix and Determinant

78884 If \(A=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\) then \(A^{-1}\) is

1 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
2 \(\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\)
3 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
4 Not exist
Matrix and Determinant

78885 If \(A^{2}-A+I=0\), then the inverse of the matrix \(A\) is

1 \(\mathrm{A}-\mathrm{I}\)
2 I - A
3 A+ I
4 \(\mathrm{A}\)
Matrix and Determinant

78886 If \(A\) and \(B\) square matrices of the same order and \(A B=3 I\), then \(A^{-1}\) is equal to

1 \(3 \mathrm{~B}\)
2 \(\frac{1}{3} \mathrm{~B}\)
3 \(3 \mathrm{~B}^{-1}\)
4 \(\frac{1}{3} \mathrm{~B}^{-1}\)
Matrix and Determinant

78887 If the inverse of the matrix \(A=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]\) is
\(B\), then \(\mathbf{B}^{\mathrm{T}}=\)

1 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]\)
2 \(\frac{1}{136}\left[\begin{array}{ccc}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]\)
3 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]\)
4 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 1 & 26 \\ 38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]\)
Matrix and Determinant

78884 If \(A=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\) then \(A^{-1}\) is

1 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
2 \(\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\)
3 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
4 Not exist
Matrix and Determinant

78885 If \(A^{2}-A+I=0\), then the inverse of the matrix \(A\) is

1 \(\mathrm{A}-\mathrm{I}\)
2 I - A
3 A+ I
4 \(\mathrm{A}\)
Matrix and Determinant

78886 If \(A\) and \(B\) square matrices of the same order and \(A B=3 I\), then \(A^{-1}\) is equal to

1 \(3 \mathrm{~B}\)
2 \(\frac{1}{3} \mathrm{~B}\)
3 \(3 \mathrm{~B}^{-1}\)
4 \(\frac{1}{3} \mathrm{~B}^{-1}\)
Matrix and Determinant

78887 If the inverse of the matrix \(A=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]\) is
\(B\), then \(\mathbf{B}^{\mathrm{T}}=\)

1 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]\)
2 \(\frac{1}{136}\left[\begin{array}{ccc}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]\)
3 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]\)
4 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 1 & 26 \\ 38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]\)
Matrix and Determinant

78884 If \(A=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\) then \(A^{-1}\) is

1 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
2 \(\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\)
3 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
4 Not exist
Matrix and Determinant

78885 If \(A^{2}-A+I=0\), then the inverse of the matrix \(A\) is

1 \(\mathrm{A}-\mathrm{I}\)
2 I - A
3 A+ I
4 \(\mathrm{A}\)
Matrix and Determinant

78886 If \(A\) and \(B\) square matrices of the same order and \(A B=3 I\), then \(A^{-1}\) is equal to

1 \(3 \mathrm{~B}\)
2 \(\frac{1}{3} \mathrm{~B}\)
3 \(3 \mathrm{~B}^{-1}\)
4 \(\frac{1}{3} \mathrm{~B}^{-1}\)
Matrix and Determinant

78887 If the inverse of the matrix \(A=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]\) is
\(B\), then \(\mathbf{B}^{\mathrm{T}}=\)

1 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]\)
2 \(\frac{1}{136}\left[\begin{array}{ccc}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]\)
3 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]\)
4 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 1 & 26 \\ 38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]\)
Matrix and Determinant

78884 If \(A=\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\) then \(A^{-1}\) is

1 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
2 \(\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -4 & -1\end{array}\right]\)
3 \(\frac{1}{7}\left[\begin{array}{cc}-1 & -2 \\ 4 & 1\end{array}\right]\)
4 Not exist
Matrix and Determinant

78885 If \(A^{2}-A+I=0\), then the inverse of the matrix \(A\) is

1 \(\mathrm{A}-\mathrm{I}\)
2 I - A
3 A+ I
4 \(\mathrm{A}\)
Matrix and Determinant

78886 If \(A\) and \(B\) square matrices of the same order and \(A B=3 I\), then \(A^{-1}\) is equal to

1 \(3 \mathrm{~B}\)
2 \(\frac{1}{3} \mathrm{~B}\)
3 \(3 \mathrm{~B}^{-1}\)
4 \(\frac{1}{3} \mathrm{~B}^{-1}\)
Matrix and Determinant

78887 If the inverse of the matrix \(A=\left[\begin{array}{ccc}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]\) is
\(B\), then \(\mathbf{B}^{\mathrm{T}}=\)

1 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]\)
2 \(\frac{1}{136}\left[\begin{array}{ccc}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]\)
3 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]\)
4 \(\frac{1}{136}\left[\begin{array}{ccc}9 & 1 & 26 \\ 38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]\)