Adjoint and Inverse of Matrices
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78858 Let \(A\) and \(B\) be two \(3 \times 3\) matrices such that \(|A B|=1\) and \(|A|=\frac{1}{8}\) then \(|\operatorname{adj}(\operatorname{Badj}(2 A))|\) is equal to

1 16
2 32
3 64
4 128
Matrix and Determinant

78859 If \(A\) is a \(3 \times 3\) matrix and \(|A|=2\), then \(\mid 3\) adj

1 \(3^{11} \cdot 6^{10}\)
2 \(3^{12} \cdot 6^{10}\)
3 \(3^{10} \cdot 6^{11}\)
4 \(3^{12} \cdot 6^{11}\)
Matrix and Determinant

78860 Let \(\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}\) be a matrix such that \(\mathrm{a}_{\mathrm{ij}}=1\) for all \(i\), \(j\). Then

1 \(\operatorname{Rank}(\mathrm{A})>1\)
2 \(\operatorname{Rank}(\mathrm{A})=1\)
3 \(\operatorname{Rank}(\mathrm{A})=\mathrm{m}\)
4 \(\operatorname{Rank}(\mathrm{A})=\mathrm{n}\)
Matrix and Determinant

78861 If \(A=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{lll}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]\), then \(|\operatorname{adj}(\operatorname{adj}(2 A))|\) is equal to :

1 \(2^{8}\)
2 \(2^{12}\)
3 \(2^{20}\)
4 \(2^{16}\)
Matrix and Determinant

78858 Let \(A\) and \(B\) be two \(3 \times 3\) matrices such that \(|A B|=1\) and \(|A|=\frac{1}{8}\) then \(|\operatorname{adj}(\operatorname{Badj}(2 A))|\) is equal to

1 16
2 32
3 64
4 128
Matrix and Determinant

78859 If \(A\) is a \(3 \times 3\) matrix and \(|A|=2\), then \(\mid 3\) adj

1 \(3^{11} \cdot 6^{10}\)
2 \(3^{12} \cdot 6^{10}\)
3 \(3^{10} \cdot 6^{11}\)
4 \(3^{12} \cdot 6^{11}\)
Matrix and Determinant

78860 Let \(\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}\) be a matrix such that \(\mathrm{a}_{\mathrm{ij}}=1\) for all \(i\), \(j\). Then

1 \(\operatorname{Rank}(\mathrm{A})>1\)
2 \(\operatorname{Rank}(\mathrm{A})=1\)
3 \(\operatorname{Rank}(\mathrm{A})=\mathrm{m}\)
4 \(\operatorname{Rank}(\mathrm{A})=\mathrm{n}\)
Matrix and Determinant

78861 If \(A=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{lll}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]\), then \(|\operatorname{adj}(\operatorname{adj}(2 A))|\) is equal to :

1 \(2^{8}\)
2 \(2^{12}\)
3 \(2^{20}\)
4 \(2^{16}\)
Matrix and Determinant

78858 Let \(A\) and \(B\) be two \(3 \times 3\) matrices such that \(|A B|=1\) and \(|A|=\frac{1}{8}\) then \(|\operatorname{adj}(\operatorname{Badj}(2 A))|\) is equal to

1 16
2 32
3 64
4 128
Matrix and Determinant

78859 If \(A\) is a \(3 \times 3\) matrix and \(|A|=2\), then \(\mid 3\) adj

1 \(3^{11} \cdot 6^{10}\)
2 \(3^{12} \cdot 6^{10}\)
3 \(3^{10} \cdot 6^{11}\)
4 \(3^{12} \cdot 6^{11}\)
Matrix and Determinant

78860 Let \(\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}\) be a matrix such that \(\mathrm{a}_{\mathrm{ij}}=1\) for all \(i\), \(j\). Then

1 \(\operatorname{Rank}(\mathrm{A})>1\)
2 \(\operatorname{Rank}(\mathrm{A})=1\)
3 \(\operatorname{Rank}(\mathrm{A})=\mathrm{m}\)
4 \(\operatorname{Rank}(\mathrm{A})=\mathrm{n}\)
Matrix and Determinant

78861 If \(A=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{lll}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]\), then \(|\operatorname{adj}(\operatorname{adj}(2 A))|\) is equal to :

1 \(2^{8}\)
2 \(2^{12}\)
3 \(2^{20}\)
4 \(2^{16}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78858 Let \(A\) and \(B\) be two \(3 \times 3\) matrices such that \(|A B|=1\) and \(|A|=\frac{1}{8}\) then \(|\operatorname{adj}(\operatorname{Badj}(2 A))|\) is equal to

1 16
2 32
3 64
4 128
Matrix and Determinant

78859 If \(A\) is a \(3 \times 3\) matrix and \(|A|=2\), then \(\mid 3\) adj

1 \(3^{11} \cdot 6^{10}\)
2 \(3^{12} \cdot 6^{10}\)
3 \(3^{10} \cdot 6^{11}\)
4 \(3^{12} \cdot 6^{11}\)
Matrix and Determinant

78860 Let \(\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}\) be a matrix such that \(\mathrm{a}_{\mathrm{ij}}=1\) for all \(i\), \(j\). Then

1 \(\operatorname{Rank}(\mathrm{A})>1\)
2 \(\operatorname{Rank}(\mathrm{A})=1\)
3 \(\operatorname{Rank}(\mathrm{A})=\mathrm{m}\)
4 \(\operatorname{Rank}(\mathrm{A})=\mathrm{n}\)
Matrix and Determinant

78861 If \(A=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{lll}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]\), then \(|\operatorname{adj}(\operatorname{adj}(2 A))|\) is equal to :

1 \(2^{8}\)
2 \(2^{12}\)
3 \(2^{20}\)
4 \(2^{16}\)