Adjoint and Inverse of Matrices
Matrix and Determinant

78807 If \(A\) is a non-singular matrix and \(\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=\) 0, then \(\mathbf{A}^{-1}=\)

1 \(\mathrm{A}\)
2 I - A
3 \(\mathrm{A}-\mathrm{I}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78808 The inverse of the matrix \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]\) is

1 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3\end{array}\right]\)
2 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
3 \(-\frac{1}{3}\left[\begin{array}{ccc}3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
4 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
Matrix and Determinant

78809 For a invertible matrix \(A\) if \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\), then \(|\mathbf{A}|=\)

1 100
2 -100
3 10
4 -10
Matrix and Determinant

78810 If the inverse of the matrix \(\left[\begin{array}{ccc}\alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3\end{array}\right]\) does
not exist then the value of \(\alpha\) is

1 1
2 -1
3 0
4 -2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78807 If \(A\) is a non-singular matrix and \(\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=\) 0, then \(\mathbf{A}^{-1}=\)

1 \(\mathrm{A}\)
2 I - A
3 \(\mathrm{A}-\mathrm{I}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78808 The inverse of the matrix \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]\) is

1 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3\end{array}\right]\)
2 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
3 \(-\frac{1}{3}\left[\begin{array}{ccc}3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
4 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
Matrix and Determinant

78809 For a invertible matrix \(A\) if \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\), then \(|\mathbf{A}|=\)

1 100
2 -100
3 10
4 -10
Matrix and Determinant

78810 If the inverse of the matrix \(\left[\begin{array}{ccc}\alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3\end{array}\right]\) does
not exist then the value of \(\alpha\) is

1 1
2 -1
3 0
4 -2
Matrix and Determinant

78807 If \(A\) is a non-singular matrix and \(\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=\) 0, then \(\mathbf{A}^{-1}=\)

1 \(\mathrm{A}\)
2 I - A
3 \(\mathrm{A}-\mathrm{I}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78808 The inverse of the matrix \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]\) is

1 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3\end{array}\right]\)
2 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
3 \(-\frac{1}{3}\left[\begin{array}{ccc}3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
4 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
Matrix and Determinant

78809 For a invertible matrix \(A\) if \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\), then \(|\mathbf{A}|=\)

1 100
2 -100
3 10
4 -10
Matrix and Determinant

78810 If the inverse of the matrix \(\left[\begin{array}{ccc}\alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3\end{array}\right]\) does
not exist then the value of \(\alpha\) is

1 1
2 -1
3 0
4 -2
Matrix and Determinant

78807 If \(A\) is a non-singular matrix and \(\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=\) 0, then \(\mathbf{A}^{-1}=\)

1 \(\mathrm{A}\)
2 I - A
3 \(\mathrm{A}-\mathrm{I}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78808 The inverse of the matrix \(\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]\) is

1 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3\end{array}\right]\)
2 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
3 \(-\frac{1}{3}\left[\begin{array}{ccc}3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
4 \(-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]\)
Matrix and Determinant

78809 For a invertible matrix \(A\) if \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]\), then \(|\mathbf{A}|=\)

1 100
2 -100
3 10
4 -10
Matrix and Determinant

78810 If the inverse of the matrix \(\left[\begin{array}{ccc}\alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3\end{array}\right]\) does
not exist then the value of \(\alpha\) is

1 1
2 -1
3 0
4 -2