Adjoint and Inverse of Matrices
Matrix and Determinant

78783 If \(A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]\) and \(A^{-1}=x A+y I\), where \(I\) is unit matrix of order 2 , then the values of \(x\) and \(y\) are respectively.

1 \(\frac{1}{11}, \frac{-2}{11}\)
2 \(\frac{1}{11}, \frac{2}{11}\)
3 \(\frac{-1}{11}, \frac{2}{11}\)
4 \(\frac{-1}{11}, \frac{-2}{11}\)
Matrix and Determinant

78784 The element in the third row and first column
of the inverse of the matrix \(\left[\begin{array}{ccc}-1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]\) is

1 4
2 2
3 3
4 -3
Matrix and Determinant

78785 If \(A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]\) and \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]\), then the values of \(\alpha\) and \(\boldsymbol{\beta}\) are, respectively

1 15,5
2 \(-15,5\)
3 \(15,-5\)
4 \(-15,-5\)
Matrix and Determinant

78786 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\) then \(B^{-1} A^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & 3 \\ 7 & 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}-2 & 3 \\ -7 & -11\end{array}\right]\)
Matrix and Determinant

78783 If \(A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]\) and \(A^{-1}=x A+y I\), where \(I\) is unit matrix of order 2 , then the values of \(x\) and \(y\) are respectively.

1 \(\frac{1}{11}, \frac{-2}{11}\)
2 \(\frac{1}{11}, \frac{2}{11}\)
3 \(\frac{-1}{11}, \frac{2}{11}\)
4 \(\frac{-1}{11}, \frac{-2}{11}\)
Matrix and Determinant

78784 The element in the third row and first column
of the inverse of the matrix \(\left[\begin{array}{ccc}-1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]\) is

1 4
2 2
3 3
4 -3
Matrix and Determinant

78785 If \(A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]\) and \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]\), then the values of \(\alpha\) and \(\boldsymbol{\beta}\) are, respectively

1 15,5
2 \(-15,5\)
3 \(15,-5\)
4 \(-15,-5\)
Matrix and Determinant

78786 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\) then \(B^{-1} A^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & 3 \\ 7 & 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}-2 & 3 \\ -7 & -11\end{array}\right]\)
Matrix and Determinant

78783 If \(A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]\) and \(A^{-1}=x A+y I\), where \(I\) is unit matrix of order 2 , then the values of \(x\) and \(y\) are respectively.

1 \(\frac{1}{11}, \frac{-2}{11}\)
2 \(\frac{1}{11}, \frac{2}{11}\)
3 \(\frac{-1}{11}, \frac{2}{11}\)
4 \(\frac{-1}{11}, \frac{-2}{11}\)
Matrix and Determinant

78784 The element in the third row and first column
of the inverse of the matrix \(\left[\begin{array}{ccc}-1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]\) is

1 4
2 2
3 3
4 -3
Matrix and Determinant

78785 If \(A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]\) and \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]\), then the values of \(\alpha\) and \(\boldsymbol{\beta}\) are, respectively

1 15,5
2 \(-15,5\)
3 \(15,-5\)
4 \(-15,-5\)
Matrix and Determinant

78786 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\) then \(B^{-1} A^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & 3 \\ 7 & 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}-2 & 3 \\ -7 & -11\end{array}\right]\)
Matrix and Determinant

78783 If \(A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]\) and \(A^{-1}=x A+y I\), where \(I\) is unit matrix of order 2 , then the values of \(x\) and \(y\) are respectively.

1 \(\frac{1}{11}, \frac{-2}{11}\)
2 \(\frac{1}{11}, \frac{2}{11}\)
3 \(\frac{-1}{11}, \frac{2}{11}\)
4 \(\frac{-1}{11}, \frac{-2}{11}\)
Matrix and Determinant

78784 The element in the third row and first column
of the inverse of the matrix \(\left[\begin{array}{ccc}-1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]\) is

1 4
2 2
3 3
4 -3
Matrix and Determinant

78785 If \(A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]\) and \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ \alpha & 6 & -5 \\ \beta & -2 & 2\end{array}\right]\), then the values of \(\alpha\) and \(\boldsymbol{\beta}\) are, respectively

1 15,5
2 \(-15,5\)
3 \(15,-5\)
4 \(-15,-5\)
Matrix and Determinant

78786 If \(A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\) then \(B^{-1} A^{-1}=\)

1 \(\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & -3 \\ -7 & 11\end{array}\right]\)
3 \(\left[\begin{array}{cc}2 & 3 \\ 7 & 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}-2 & 3 \\ -7 & -11\end{array}\right]\)