03. ELECTROCHEMISTRY
ELECTROCHEMISTRY

20025 The relationship between standard reduction potential of cell and equilibrium constant is shown by

1 \(E_{cell}^0 = \frac{n}{{0.059}}\log {K_c}\)
2 \(E_{cell}^0 = \frac{{0.059}}{n}\log {K_c}\)
3 \(E_{cell}^0 = 0.059\,n\,\log {K_c}\)
4 \(E_{cell}^0 = \frac{{\log {K_c}}}{n}\)
ELECTROCHEMISTRY

20026 Consider the Galvanic cell \(\,Z{n^\Theta } \vertZnS{O_4} \vert \vertCuS{O_4} \vertC{u^ \oplus }\) the reaction at cathode is

1 \(Z{n^2}^ + + 2{e^ - } \to Zn\)
2 \(C{u^{2 + }} + 2{e^ - } \to Cu\)
3 \(C{u^{2 + }} + Zn \to Cu + Z{n^{2 + }}\)
4 \(Z{n^{2 + }} + Cu \to Zn + C{u^{2 + }}\)
ELECTROCHEMISTRY

20027 The cell reaction \(Cu + 2A{g^ + } \to C{u^{ + 2}} + Ag\) is best represented by

1 \(C{u_{(s)}} \vertC{u^{ + 2}}_{(aq)} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
2 \(Pt \vertC{u^{ + 2}} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
3 None of the above representations
4 \(C{u^{ + 2}} \vertCu \vert \vertPt \vertAg\)
ELECTROCHEMISTRY

20028 \(\mathop {Z{n_{(s)}} \vertZ{n^{2 + }}_{(aq)} \vert}\limits_{{\rm{(anode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,} \vert\mathop {C{u^{2 + }}_{(aq)} \vertC{u_{(s)}}}\limits_{{\rm{(cathode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \)is

1 Weston cell
2 Daniel cell
3 Calomel cell
4 Faraday cell
ELECTROCHEMISTRY

20025 The relationship between standard reduction potential of cell and equilibrium constant is shown by

1 \(E_{cell}^0 = \frac{n}{{0.059}}\log {K_c}\)
2 \(E_{cell}^0 = \frac{{0.059}}{n}\log {K_c}\)
3 \(E_{cell}^0 = 0.059\,n\,\log {K_c}\)
4 \(E_{cell}^0 = \frac{{\log {K_c}}}{n}\)
ELECTROCHEMISTRY

20026 Consider the Galvanic cell \(\,Z{n^\Theta } \vertZnS{O_4} \vert \vertCuS{O_4} \vertC{u^ \oplus }\) the reaction at cathode is

1 \(Z{n^2}^ + + 2{e^ - } \to Zn\)
2 \(C{u^{2 + }} + 2{e^ - } \to Cu\)
3 \(C{u^{2 + }} + Zn \to Cu + Z{n^{2 + }}\)
4 \(Z{n^{2 + }} + Cu \to Zn + C{u^{2 + }}\)
ELECTROCHEMISTRY

20027 The cell reaction \(Cu + 2A{g^ + } \to C{u^{ + 2}} + Ag\) is best represented by

1 \(C{u_{(s)}} \vertC{u^{ + 2}}_{(aq)} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
2 \(Pt \vertC{u^{ + 2}} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
3 None of the above representations
4 \(C{u^{ + 2}} \vertCu \vert \vertPt \vertAg\)
ELECTROCHEMISTRY

20028 \(\mathop {Z{n_{(s)}} \vertZ{n^{2 + }}_{(aq)} \vert}\limits_{{\rm{(anode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,} \vert\mathop {C{u^{2 + }}_{(aq)} \vertC{u_{(s)}}}\limits_{{\rm{(cathode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \)is

1 Weston cell
2 Daniel cell
3 Calomel cell
4 Faraday cell
ELECTROCHEMISTRY

20025 The relationship between standard reduction potential of cell and equilibrium constant is shown by

1 \(E_{cell}^0 = \frac{n}{{0.059}}\log {K_c}\)
2 \(E_{cell}^0 = \frac{{0.059}}{n}\log {K_c}\)
3 \(E_{cell}^0 = 0.059\,n\,\log {K_c}\)
4 \(E_{cell}^0 = \frac{{\log {K_c}}}{n}\)
ELECTROCHEMISTRY

20026 Consider the Galvanic cell \(\,Z{n^\Theta } \vertZnS{O_4} \vert \vertCuS{O_4} \vertC{u^ \oplus }\) the reaction at cathode is

1 \(Z{n^2}^ + + 2{e^ - } \to Zn\)
2 \(C{u^{2 + }} + 2{e^ - } \to Cu\)
3 \(C{u^{2 + }} + Zn \to Cu + Z{n^{2 + }}\)
4 \(Z{n^{2 + }} + Cu \to Zn + C{u^{2 + }}\)
ELECTROCHEMISTRY

20027 The cell reaction \(Cu + 2A{g^ + } \to C{u^{ + 2}} + Ag\) is best represented by

1 \(C{u_{(s)}} \vertC{u^{ + 2}}_{(aq)} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
2 \(Pt \vertC{u^{ + 2}} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
3 None of the above representations
4 \(C{u^{ + 2}} \vertCu \vert \vertPt \vertAg\)
ELECTROCHEMISTRY

20028 \(\mathop {Z{n_{(s)}} \vertZ{n^{2 + }}_{(aq)} \vert}\limits_{{\rm{(anode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,} \vert\mathop {C{u^{2 + }}_{(aq)} \vertC{u_{(s)}}}\limits_{{\rm{(cathode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \)is

1 Weston cell
2 Daniel cell
3 Calomel cell
4 Faraday cell
ELECTROCHEMISTRY

20025 The relationship between standard reduction potential of cell and equilibrium constant is shown by

1 \(E_{cell}^0 = \frac{n}{{0.059}}\log {K_c}\)
2 \(E_{cell}^0 = \frac{{0.059}}{n}\log {K_c}\)
3 \(E_{cell}^0 = 0.059\,n\,\log {K_c}\)
4 \(E_{cell}^0 = \frac{{\log {K_c}}}{n}\)
ELECTROCHEMISTRY

20026 Consider the Galvanic cell \(\,Z{n^\Theta } \vertZnS{O_4} \vert \vertCuS{O_4} \vertC{u^ \oplus }\) the reaction at cathode is

1 \(Z{n^2}^ + + 2{e^ - } \to Zn\)
2 \(C{u^{2 + }} + 2{e^ - } \to Cu\)
3 \(C{u^{2 + }} + Zn \to Cu + Z{n^{2 + }}\)
4 \(Z{n^{2 + }} + Cu \to Zn + C{u^{2 + }}\)
ELECTROCHEMISTRY

20027 The cell reaction \(Cu + 2A{g^ + } \to C{u^{ + 2}} + Ag\) is best represented by

1 \(C{u_{(s)}} \vertC{u^{ + 2}}_{(aq)} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
2 \(Pt \vertC{u^{ + 2}} \vert \vertA{g^ + }_{(aq)} \vertA{g_{(s)}}\)
3 None of the above representations
4 \(C{u^{ + 2}} \vertCu \vert \vertPt \vertAg\)
ELECTROCHEMISTRY

20028 \(\mathop {Z{n_{(s)}} \vertZ{n^{2 + }}_{(aq)} \vert}\limits_{{\rm{(anode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,} \vert\mathop {C{u^{2 + }}_{(aq)} \vertC{u_{(s)}}}\limits_{{\rm{(cathode)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \)is

1 Weston cell
2 Daniel cell
3 Calomel cell
4 Faraday cell