07. EQUILIBRIUM
Chemical Equilibrium

33475 The equilibrium constant for the given reaction \({H_2} + {I_2}\) \(\rightleftharpoons\) \(2HI\) is correctly given by expression

1 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[HI]}}\)
2 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[2HI]}}\)
3 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}\)
4 \({K_c} = \frac{{{{[HI]}^2}}}{{[{H_2}][{I_2}]}}\)
Chemical Equilibrium

33476 Partial pressures of \(A\), \(B\), \(C\) and \(D\) on the basis of gaseous system \(A + 2B\) \(\rightleftharpoons\) \(C + 3D\) are \(A = 0.20\); \( B = 0.10\); \(C = 0.30\) and \(D = 0.50\, atm\). The numerical value of equilibrium constant is

1 \(11.25\)
2 \(18.75\)
3 \(5\)
4 \(3.75\)
Chemical Equilibrium

33477 For the reaction \(A + 2B\) \(\rightleftharpoons\) \(C\), the expression for equilibrium constant is

1 \(\frac{{[A]{{[B]}^2}}}{{[C]}}\)
2 \(\frac{{[A][B]}}{{[C]}}\)
3 \(\frac{{[C]}}{{[A]{{[B]}^2}}}\)
4 \(\frac{{[C]}}{{2[B][A]}}\)
Chemical Equilibrium

33478 \(2\) moles of \(PC{l_5}\) were heated in a closed vessel of \(2\) litre capacity. At equilibrium, \(40\%\) of \(PC{l_5}\) is dissociated into \(PC{l_3}\) and \(C{l_2}\). The value of equilibrium constant is

1 \(0.266\)
2 \(0.53\)
3 \(2.66\)
4 \(5.3\)
Chemical Equilibrium

33479 For which of the following reactions does the equilibrium constant depend on the units of concentration

1 \(N{O_{(g)}}\) \( \rightleftharpoons \) \(\frac{1}{2}{N_{2(g)}} + \frac{1}{2}{O_{2(g)}}\)
2 \(Z{n_{(s)}} + Cu_{(aq)}^{2 + }\) \( \rightleftharpoons \) \(C{u_{(s)}} + Zn_{(aq)}^{2 + }\)
3 \({C_2}{H_5}O{H_{(l)}} + C{H_3}COO{H_{(l)}}\) \( \rightleftharpoons \) \(C{H_3}COO{C_2}{H_{5(l)}} + {H_2}{O_{(l)}}\) (Reaction carried in an inert solvent)
4 \(COC{l_{2(g)}}\) \( \rightleftharpoons \) \(C{O_{(g)}} + C{l_{2\,(g)}}\)
Chemical Equilibrium

33475 The equilibrium constant for the given reaction \({H_2} + {I_2}\) \(\rightleftharpoons\) \(2HI\) is correctly given by expression

1 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[HI]}}\)
2 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[2HI]}}\)
3 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}\)
4 \({K_c} = \frac{{{{[HI]}^2}}}{{[{H_2}][{I_2}]}}\)
Chemical Equilibrium

33476 Partial pressures of \(A\), \(B\), \(C\) and \(D\) on the basis of gaseous system \(A + 2B\) \(\rightleftharpoons\) \(C + 3D\) are \(A = 0.20\); \( B = 0.10\); \(C = 0.30\) and \(D = 0.50\, atm\). The numerical value of equilibrium constant is

1 \(11.25\)
2 \(18.75\)
3 \(5\)
4 \(3.75\)
Chemical Equilibrium

33477 For the reaction \(A + 2B\) \(\rightleftharpoons\) \(C\), the expression for equilibrium constant is

1 \(\frac{{[A]{{[B]}^2}}}{{[C]}}\)
2 \(\frac{{[A][B]}}{{[C]}}\)
3 \(\frac{{[C]}}{{[A]{{[B]}^2}}}\)
4 \(\frac{{[C]}}{{2[B][A]}}\)
Chemical Equilibrium

33478 \(2\) moles of \(PC{l_5}\) were heated in a closed vessel of \(2\) litre capacity. At equilibrium, \(40\%\) of \(PC{l_5}\) is dissociated into \(PC{l_3}\) and \(C{l_2}\). The value of equilibrium constant is

1 \(0.266\)
2 \(0.53\)
3 \(2.66\)
4 \(5.3\)
Chemical Equilibrium

33479 For which of the following reactions does the equilibrium constant depend on the units of concentration

1 \(N{O_{(g)}}\) \( \rightleftharpoons \) \(\frac{1}{2}{N_{2(g)}} + \frac{1}{2}{O_{2(g)}}\)
2 \(Z{n_{(s)}} + Cu_{(aq)}^{2 + }\) \( \rightleftharpoons \) \(C{u_{(s)}} + Zn_{(aq)}^{2 + }\)
3 \({C_2}{H_5}O{H_{(l)}} + C{H_3}COO{H_{(l)}}\) \( \rightleftharpoons \) \(C{H_3}COO{C_2}{H_{5(l)}} + {H_2}{O_{(l)}}\) (Reaction carried in an inert solvent)
4 \(COC{l_{2(g)}}\) \( \rightleftharpoons \) \(C{O_{(g)}} + C{l_{2\,(g)}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

33475 The equilibrium constant for the given reaction \({H_2} + {I_2}\) \(\rightleftharpoons\) \(2HI\) is correctly given by expression

1 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[HI]}}\)
2 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[2HI]}}\)
3 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}\)
4 \({K_c} = \frac{{{{[HI]}^2}}}{{[{H_2}][{I_2}]}}\)
Chemical Equilibrium

33476 Partial pressures of \(A\), \(B\), \(C\) and \(D\) on the basis of gaseous system \(A + 2B\) \(\rightleftharpoons\) \(C + 3D\) are \(A = 0.20\); \( B = 0.10\); \(C = 0.30\) and \(D = 0.50\, atm\). The numerical value of equilibrium constant is

1 \(11.25\)
2 \(18.75\)
3 \(5\)
4 \(3.75\)
Chemical Equilibrium

33477 For the reaction \(A + 2B\) \(\rightleftharpoons\) \(C\), the expression for equilibrium constant is

1 \(\frac{{[A]{{[B]}^2}}}{{[C]}}\)
2 \(\frac{{[A][B]}}{{[C]}}\)
3 \(\frac{{[C]}}{{[A]{{[B]}^2}}}\)
4 \(\frac{{[C]}}{{2[B][A]}}\)
Chemical Equilibrium

33478 \(2\) moles of \(PC{l_5}\) were heated in a closed vessel of \(2\) litre capacity. At equilibrium, \(40\%\) of \(PC{l_5}\) is dissociated into \(PC{l_3}\) and \(C{l_2}\). The value of equilibrium constant is

1 \(0.266\)
2 \(0.53\)
3 \(2.66\)
4 \(5.3\)
Chemical Equilibrium

33479 For which of the following reactions does the equilibrium constant depend on the units of concentration

1 \(N{O_{(g)}}\) \( \rightleftharpoons \) \(\frac{1}{2}{N_{2(g)}} + \frac{1}{2}{O_{2(g)}}\)
2 \(Z{n_{(s)}} + Cu_{(aq)}^{2 + }\) \( \rightleftharpoons \) \(C{u_{(s)}} + Zn_{(aq)}^{2 + }\)
3 \({C_2}{H_5}O{H_{(l)}} + C{H_3}COO{H_{(l)}}\) \( \rightleftharpoons \) \(C{H_3}COO{C_2}{H_{5(l)}} + {H_2}{O_{(l)}}\) (Reaction carried in an inert solvent)
4 \(COC{l_{2(g)}}\) \( \rightleftharpoons \) \(C{O_{(g)}} + C{l_{2\,(g)}}\)
Chemical Equilibrium

33475 The equilibrium constant for the given reaction \({H_2} + {I_2}\) \(\rightleftharpoons\) \(2HI\) is correctly given by expression

1 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[HI]}}\)
2 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[2HI]}}\)
3 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}\)
4 \({K_c} = \frac{{{{[HI]}^2}}}{{[{H_2}][{I_2}]}}\)
Chemical Equilibrium

33476 Partial pressures of \(A\), \(B\), \(C\) and \(D\) on the basis of gaseous system \(A + 2B\) \(\rightleftharpoons\) \(C + 3D\) are \(A = 0.20\); \( B = 0.10\); \(C = 0.30\) and \(D = 0.50\, atm\). The numerical value of equilibrium constant is

1 \(11.25\)
2 \(18.75\)
3 \(5\)
4 \(3.75\)
Chemical Equilibrium

33477 For the reaction \(A + 2B\) \(\rightleftharpoons\) \(C\), the expression for equilibrium constant is

1 \(\frac{{[A]{{[B]}^2}}}{{[C]}}\)
2 \(\frac{{[A][B]}}{{[C]}}\)
3 \(\frac{{[C]}}{{[A]{{[B]}^2}}}\)
4 \(\frac{{[C]}}{{2[B][A]}}\)
Chemical Equilibrium

33478 \(2\) moles of \(PC{l_5}\) were heated in a closed vessel of \(2\) litre capacity. At equilibrium, \(40\%\) of \(PC{l_5}\) is dissociated into \(PC{l_3}\) and \(C{l_2}\). The value of equilibrium constant is

1 \(0.266\)
2 \(0.53\)
3 \(2.66\)
4 \(5.3\)
Chemical Equilibrium

33479 For which of the following reactions does the equilibrium constant depend on the units of concentration

1 \(N{O_{(g)}}\) \( \rightleftharpoons \) \(\frac{1}{2}{N_{2(g)}} + \frac{1}{2}{O_{2(g)}}\)
2 \(Z{n_{(s)}} + Cu_{(aq)}^{2 + }\) \( \rightleftharpoons \) \(C{u_{(s)}} + Zn_{(aq)}^{2 + }\)
3 \({C_2}{H_5}O{H_{(l)}} + C{H_3}COO{H_{(l)}}\) \( \rightleftharpoons \) \(C{H_3}COO{C_2}{H_{5(l)}} + {H_2}{O_{(l)}}\) (Reaction carried in an inert solvent)
4 \(COC{l_{2(g)}}\) \( \rightleftharpoons \) \(C{O_{(g)}} + C{l_{2\,(g)}}\)
Chemical Equilibrium

33475 The equilibrium constant for the given reaction \({H_2} + {I_2}\) \(\rightleftharpoons\) \(2HI\) is correctly given by expression

1 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[HI]}}\)
2 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{[2HI]}}\)
3 \({K_c} = \frac{{[{H_2}][{I_2}]}}{{{{[HI]}^2}}}\)
4 \({K_c} = \frac{{{{[HI]}^2}}}{{[{H_2}][{I_2}]}}\)
Chemical Equilibrium

33476 Partial pressures of \(A\), \(B\), \(C\) and \(D\) on the basis of gaseous system \(A + 2B\) \(\rightleftharpoons\) \(C + 3D\) are \(A = 0.20\); \( B = 0.10\); \(C = 0.30\) and \(D = 0.50\, atm\). The numerical value of equilibrium constant is

1 \(11.25\)
2 \(18.75\)
3 \(5\)
4 \(3.75\)
Chemical Equilibrium

33477 For the reaction \(A + 2B\) \(\rightleftharpoons\) \(C\), the expression for equilibrium constant is

1 \(\frac{{[A]{{[B]}^2}}}{{[C]}}\)
2 \(\frac{{[A][B]}}{{[C]}}\)
3 \(\frac{{[C]}}{{[A]{{[B]}^2}}}\)
4 \(\frac{{[C]}}{{2[B][A]}}\)
Chemical Equilibrium

33478 \(2\) moles of \(PC{l_5}\) were heated in a closed vessel of \(2\) litre capacity. At equilibrium, \(40\%\) of \(PC{l_5}\) is dissociated into \(PC{l_3}\) and \(C{l_2}\). The value of equilibrium constant is

1 \(0.266\)
2 \(0.53\)
3 \(2.66\)
4 \(5.3\)
Chemical Equilibrium

33479 For which of the following reactions does the equilibrium constant depend on the units of concentration

1 \(N{O_{(g)}}\) \( \rightleftharpoons \) \(\frac{1}{2}{N_{2(g)}} + \frac{1}{2}{O_{2(g)}}\)
2 \(Z{n_{(s)}} + Cu_{(aq)}^{2 + }\) \( \rightleftharpoons \) \(C{u_{(s)}} + Zn_{(aq)}^{2 + }\)
3 \({C_2}{H_5}O{H_{(l)}} + C{H_3}COO{H_{(l)}}\) \( \rightleftharpoons \) \(C{H_3}COO{C_2}{H_{5(l)}} + {H_2}{O_{(l)}}\) (Reaction carried in an inert solvent)
4 \(COC{l_{2(g)}}\) \( \rightleftharpoons \) \(C{O_{(g)}} + C{l_{2\,(g)}}\)