01. Poynting vector, Energy transported by EM wave, Energy density
Electromagnetic Wave

155633 A point source of $100 \mathrm{~W}$ emits light with $5 \%$ efficiency. At a distance of $5 \mathrm{~m}$ from the source, the intensity produced by the electric field component is :

1 $\frac{1}{40 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
2 $\frac{1}{10 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
3 $\frac{1}{20 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
4 $\frac{1}{2 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
Electromagnetic Wave

155634 A small object at rest, absorbs a light pulse of power $20 \mathrm{~mW}$ and duration $300 \mathrm{~ns}$. Assuming speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object become equal to:

1 $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2 $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3 $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4 $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155636 In a plane electromagnetic wave, the maximum value of the electric field component is $4.4 \mathrm{Vm}^{-}$ ${ }^{1}$. The intensity of the wave is nearly-

1 $22.4 \mathrm{~mW} \mathrm{~m}^{-2}$
2 $25.7 \mathrm{~mW} \mathrm{~m}^{-2}$
3 $65.5 \mathrm{~mW} \mathrm{~m}^{-2}$
4 $45.6 \mathrm{~mW} \mathrm{~m}^{-2}$
Electromagnetic Wave

155637 About $20 \%$ of the power of a $100 \mathrm{~W}$ bulb is converted to visible radiation Assuming that the radiation is emitted isotropically and neglecting reflection, the average intensity of visible radiation at a distance of $5 \mathrm{~m}$ is $\frac{\alpha}{25 \pi} \mathbf{W} / \mathbf{m}^{2}$.The value of $\alpha$ is

1 15
2 5
3 37.5
4 30
Electromagnetic Wave

155640 A light bulb of power $100 \mathrm{~W}$ is placed at the centre of a hollow sphere of radius $10 \mathrm{~cm}$. If the $66 \%$ of the energy is converted into light, then the pressure exerted by the light on the surface of the sphere will be:
(Assume the surface of sphere to be perfectly absorbing)

1 $1.0 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.75 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
4 $7.5 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
Electromagnetic Wave

155633 A point source of $100 \mathrm{~W}$ emits light with $5 \%$ efficiency. At a distance of $5 \mathrm{~m}$ from the source, the intensity produced by the electric field component is :

1 $\frac{1}{40 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
2 $\frac{1}{10 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
3 $\frac{1}{20 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
4 $\frac{1}{2 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
Electromagnetic Wave

155634 A small object at rest, absorbs a light pulse of power $20 \mathrm{~mW}$ and duration $300 \mathrm{~ns}$. Assuming speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object become equal to:

1 $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2 $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3 $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4 $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155636 In a plane electromagnetic wave, the maximum value of the electric field component is $4.4 \mathrm{Vm}^{-}$ ${ }^{1}$. The intensity of the wave is nearly-

1 $22.4 \mathrm{~mW} \mathrm{~m}^{-2}$
2 $25.7 \mathrm{~mW} \mathrm{~m}^{-2}$
3 $65.5 \mathrm{~mW} \mathrm{~m}^{-2}$
4 $45.6 \mathrm{~mW} \mathrm{~m}^{-2}$
Electromagnetic Wave

155637 About $20 \%$ of the power of a $100 \mathrm{~W}$ bulb is converted to visible radiation Assuming that the radiation is emitted isotropically and neglecting reflection, the average intensity of visible radiation at a distance of $5 \mathrm{~m}$ is $\frac{\alpha}{25 \pi} \mathbf{W} / \mathbf{m}^{2}$.The value of $\alpha$ is

1 15
2 5
3 37.5
4 30
Electromagnetic Wave

155640 A light bulb of power $100 \mathrm{~W}$ is placed at the centre of a hollow sphere of radius $10 \mathrm{~cm}$. If the $66 \%$ of the energy is converted into light, then the pressure exerted by the light on the surface of the sphere will be:
(Assume the surface of sphere to be perfectly absorbing)

1 $1.0 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.75 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
4 $7.5 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
Electromagnetic Wave

155633 A point source of $100 \mathrm{~W}$ emits light with $5 \%$ efficiency. At a distance of $5 \mathrm{~m}$ from the source, the intensity produced by the electric field component is :

1 $\frac{1}{40 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
2 $\frac{1}{10 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
3 $\frac{1}{20 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
4 $\frac{1}{2 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
Electromagnetic Wave

155634 A small object at rest, absorbs a light pulse of power $20 \mathrm{~mW}$ and duration $300 \mathrm{~ns}$. Assuming speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object become equal to:

1 $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2 $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3 $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4 $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155636 In a plane electromagnetic wave, the maximum value of the electric field component is $4.4 \mathrm{Vm}^{-}$ ${ }^{1}$. The intensity of the wave is nearly-

1 $22.4 \mathrm{~mW} \mathrm{~m}^{-2}$
2 $25.7 \mathrm{~mW} \mathrm{~m}^{-2}$
3 $65.5 \mathrm{~mW} \mathrm{~m}^{-2}$
4 $45.6 \mathrm{~mW} \mathrm{~m}^{-2}$
Electromagnetic Wave

155637 About $20 \%$ of the power of a $100 \mathrm{~W}$ bulb is converted to visible radiation Assuming that the radiation is emitted isotropically and neglecting reflection, the average intensity of visible radiation at a distance of $5 \mathrm{~m}$ is $\frac{\alpha}{25 \pi} \mathbf{W} / \mathbf{m}^{2}$.The value of $\alpha$ is

1 15
2 5
3 37.5
4 30
Electromagnetic Wave

155640 A light bulb of power $100 \mathrm{~W}$ is placed at the centre of a hollow sphere of radius $10 \mathrm{~cm}$. If the $66 \%$ of the energy is converted into light, then the pressure exerted by the light on the surface of the sphere will be:
(Assume the surface of sphere to be perfectly absorbing)

1 $1.0 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.75 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
4 $7.5 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
Electromagnetic Wave

155633 A point source of $100 \mathrm{~W}$ emits light with $5 \%$ efficiency. At a distance of $5 \mathrm{~m}$ from the source, the intensity produced by the electric field component is :

1 $\frac{1}{40 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
2 $\frac{1}{10 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
3 $\frac{1}{20 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
4 $\frac{1}{2 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
Electromagnetic Wave

155634 A small object at rest, absorbs a light pulse of power $20 \mathrm{~mW}$ and duration $300 \mathrm{~ns}$. Assuming speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object become equal to:

1 $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2 $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3 $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4 $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155636 In a plane electromagnetic wave, the maximum value of the electric field component is $4.4 \mathrm{Vm}^{-}$ ${ }^{1}$. The intensity of the wave is nearly-

1 $22.4 \mathrm{~mW} \mathrm{~m}^{-2}$
2 $25.7 \mathrm{~mW} \mathrm{~m}^{-2}$
3 $65.5 \mathrm{~mW} \mathrm{~m}^{-2}$
4 $45.6 \mathrm{~mW} \mathrm{~m}^{-2}$
Electromagnetic Wave

155637 About $20 \%$ of the power of a $100 \mathrm{~W}$ bulb is converted to visible radiation Assuming that the radiation is emitted isotropically and neglecting reflection, the average intensity of visible radiation at a distance of $5 \mathrm{~m}$ is $\frac{\alpha}{25 \pi} \mathbf{W} / \mathbf{m}^{2}$.The value of $\alpha$ is

1 15
2 5
3 37.5
4 30
Electromagnetic Wave

155640 A light bulb of power $100 \mathrm{~W}$ is placed at the centre of a hollow sphere of radius $10 \mathrm{~cm}$. If the $66 \%$ of the energy is converted into light, then the pressure exerted by the light on the surface of the sphere will be:
(Assume the surface of sphere to be perfectly absorbing)

1 $1.0 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.75 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
4 $7.5 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
Electromagnetic Wave

155633 A point source of $100 \mathrm{~W}$ emits light with $5 \%$ efficiency. At a distance of $5 \mathrm{~m}$ from the source, the intensity produced by the electric field component is :

1 $\frac{1}{40 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
2 $\frac{1}{10 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
3 $\frac{1}{20 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
4 $\frac{1}{2 \pi} \frac{\mathrm{W}}{\mathrm{m}^{2}}$
Electromagnetic Wave

155634 A small object at rest, absorbs a light pulse of power $20 \mathrm{~mW}$ and duration $300 \mathrm{~ns}$. Assuming speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object become equal to:

1 $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2 $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3 $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4 $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Electromagnetic Wave

155636 In a plane electromagnetic wave, the maximum value of the electric field component is $4.4 \mathrm{Vm}^{-}$ ${ }^{1}$. The intensity of the wave is nearly-

1 $22.4 \mathrm{~mW} \mathrm{~m}^{-2}$
2 $25.7 \mathrm{~mW} \mathrm{~m}^{-2}$
3 $65.5 \mathrm{~mW} \mathrm{~m}^{-2}$
4 $45.6 \mathrm{~mW} \mathrm{~m}^{-2}$
Electromagnetic Wave

155637 About $20 \%$ of the power of a $100 \mathrm{~W}$ bulb is converted to visible radiation Assuming that the radiation is emitted isotropically and neglecting reflection, the average intensity of visible radiation at a distance of $5 \mathrm{~m}$ is $\frac{\alpha}{25 \pi} \mathbf{W} / \mathbf{m}^{2}$.The value of $\alpha$ is

1 15
2 5
3 37.5
4 30
Electromagnetic Wave

155640 A light bulb of power $100 \mathrm{~W}$ is placed at the centre of a hollow sphere of radius $10 \mathrm{~cm}$. If the $66 \%$ of the energy is converted into light, then the pressure exerted by the light on the surface of the sphere will be:
(Assume the surface of sphere to be perfectly absorbing)

1 $1.0 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
2 $1.5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$
3 $1.75 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$
4 $7.5 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$