01. Poynting vector, Energy transported by EM wave, Energy density
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155603 A radiation of energy ' $E$ ' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is $(c=$ velocity of light)

1 $\frac{E}{c}$
2 $\frac{2 \mathrm{E}}{\mathrm{c}}$
3 $\frac{2 \mathrm{E}}{\mathrm{c}^{2}}$
4 $\frac{E}{c^{2}}$
Electromagnetic Wave

155606 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{x}$-direction. If $\overrightarrow{\mathbf{E}}$ at a particular point in space and time is $6.3 \hat{\mathbf{j}} \mathrm{Vm}^{-1}, \overrightarrow{\mathrm{B}}$ at that point is
(Given $\mathrm{C}=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$

1 $2.1 \times 10^{-8} \mathrm{~T}$
2 $3.5 \times 10^{-5} \mathrm{~T}$
3 $2.6 \times 10^{-6} \mathrm{~T}$
4 $3.1 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155607 For an EM Wave, the electric and magnetic fields are $300 \mathrm{~V} / \mathrm{m}$ and $7.9 \mathrm{~A} / \mathrm{m}$ respectively. The maximum rate of energy flow is

1 $2730 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
2 $2790 \frac{\text { watt }}{\mathrm{m}^{2}}$
3 $2370 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
4 $2390 \frac{\text { watt }}{\mathrm{m}^{2}}$
Electromagnetic Wave

155608 The magnetic field in a plane electromagnetic wave is given by $B_{y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+\right.$ $\left.3 \pi \times 10^{11} \mathrm{t}\right) \mathrm{T}$
Calculate the wavelength.

1 $\pi \times 10^{3} \mathrm{~m}$
2 $2 \times 10^{-3} \mathrm{~m}$
3 $2 \times 10^{3} \mathrm{~m}$
4 $\pi \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155603 A radiation of energy ' $E$ ' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is $(c=$ velocity of light)

1 $\frac{E}{c}$
2 $\frac{2 \mathrm{E}}{\mathrm{c}}$
3 $\frac{2 \mathrm{E}}{\mathrm{c}^{2}}$
4 $\frac{E}{c^{2}}$
Electromagnetic Wave

155606 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{x}$-direction. If $\overrightarrow{\mathbf{E}}$ at a particular point in space and time is $6.3 \hat{\mathbf{j}} \mathrm{Vm}^{-1}, \overrightarrow{\mathrm{B}}$ at that point is
(Given $\mathrm{C}=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$

1 $2.1 \times 10^{-8} \mathrm{~T}$
2 $3.5 \times 10^{-5} \mathrm{~T}$
3 $2.6 \times 10^{-6} \mathrm{~T}$
4 $3.1 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155607 For an EM Wave, the electric and magnetic fields are $300 \mathrm{~V} / \mathrm{m}$ and $7.9 \mathrm{~A} / \mathrm{m}$ respectively. The maximum rate of energy flow is

1 $2730 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
2 $2790 \frac{\text { watt }}{\mathrm{m}^{2}}$
3 $2370 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
4 $2390 \frac{\text { watt }}{\mathrm{m}^{2}}$
Electromagnetic Wave

155608 The magnetic field in a plane electromagnetic wave is given by $B_{y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+\right.$ $\left.3 \pi \times 10^{11} \mathrm{t}\right) \mathrm{T}$
Calculate the wavelength.

1 $\pi \times 10^{3} \mathrm{~m}$
2 $2 \times 10^{-3} \mathrm{~m}$
3 $2 \times 10^{3} \mathrm{~m}$
4 $\pi \times 10^{-3} \mathrm{~m}$
Electromagnetic Wave

155603 A radiation of energy ' $E$ ' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is $(c=$ velocity of light)

1 $\frac{E}{c}$
2 $\frac{2 \mathrm{E}}{\mathrm{c}}$
3 $\frac{2 \mathrm{E}}{\mathrm{c}^{2}}$
4 $\frac{E}{c^{2}}$
Electromagnetic Wave

155606 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{x}$-direction. If $\overrightarrow{\mathbf{E}}$ at a particular point in space and time is $6.3 \hat{\mathbf{j}} \mathrm{Vm}^{-1}, \overrightarrow{\mathrm{B}}$ at that point is
(Given $\mathrm{C}=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$

1 $2.1 \times 10^{-8} \mathrm{~T}$
2 $3.5 \times 10^{-5} \mathrm{~T}$
3 $2.6 \times 10^{-6} \mathrm{~T}$
4 $3.1 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155607 For an EM Wave, the electric and magnetic fields are $300 \mathrm{~V} / \mathrm{m}$ and $7.9 \mathrm{~A} / \mathrm{m}$ respectively. The maximum rate of energy flow is

1 $2730 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
2 $2790 \frac{\text { watt }}{\mathrm{m}^{2}}$
3 $2370 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
4 $2390 \frac{\text { watt }}{\mathrm{m}^{2}}$
Electromagnetic Wave

155608 The magnetic field in a plane electromagnetic wave is given by $B_{y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+\right.$ $\left.3 \pi \times 10^{11} \mathrm{t}\right) \mathrm{T}$
Calculate the wavelength.

1 $\pi \times 10^{3} \mathrm{~m}$
2 $2 \times 10^{-3} \mathrm{~m}$
3 $2 \times 10^{3} \mathrm{~m}$
4 $\pi \times 10^{-3} \mathrm{~m}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electromagnetic Wave

155603 A radiation of energy ' $E$ ' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is $(c=$ velocity of light)

1 $\frac{E}{c}$
2 $\frac{2 \mathrm{E}}{\mathrm{c}}$
3 $\frac{2 \mathrm{E}}{\mathrm{c}^{2}}$
4 $\frac{E}{c^{2}}$
Electromagnetic Wave

155606 A plane electromagnetic wave of frequency 25 $\mathrm{MHz}$ travels in free space along the $\mathrm{x}$-direction. If $\overrightarrow{\mathbf{E}}$ at a particular point in space and time is $6.3 \hat{\mathbf{j}} \mathrm{Vm}^{-1}, \overrightarrow{\mathrm{B}}$ at that point is
(Given $\mathrm{C}=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$

1 $2.1 \times 10^{-8} \mathrm{~T}$
2 $3.5 \times 10^{-5} \mathrm{~T}$
3 $2.6 \times 10^{-6} \mathrm{~T}$
4 $3.1 \times 10^{-6} \mathrm{~T}$
Electromagnetic Wave

155607 For an EM Wave, the electric and magnetic fields are $300 \mathrm{~V} / \mathrm{m}$ and $7.9 \mathrm{~A} / \mathrm{m}$ respectively. The maximum rate of energy flow is

1 $2730 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
2 $2790 \frac{\text { watt }}{\mathrm{m}^{2}}$
3 $2370 \frac{\mathrm{watt}}{\mathrm{m}^{2}}$
4 $2390 \frac{\text { watt }}{\mathrm{m}^{2}}$
Electromagnetic Wave

155608 The magnetic field in a plane electromagnetic wave is given by $B_{y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+\right.$ $\left.3 \pi \times 10^{11} \mathrm{t}\right) \mathrm{T}$
Calculate the wavelength.

1 $\pi \times 10^{3} \mathrm{~m}$
2 $2 \times 10^{-3} \mathrm{~m}$
3 $2 \times 10^{3} \mathrm{~m}$
4 $\pi \times 10^{-3} \mathrm{~m}$