01. Poynting vector, Energy transported by EM wave, Energy density
Electromagnetic Wave

155599 Among the following, the incorrect Maxwells Electromagnetic equation is

1 $\int \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \vec{l}=\mu_{\mathrm{o}} \mathrm{i}_{\mathrm{c}}+\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$
2 $f \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
3 $\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$
4 $f \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
Electromagnetic Wave

155600 A plane electromagnetic wave of frequency 50 $\mathrm{MHz}$ travels in free space. If the average energy densities in the electric field and magnetic field are $K_{E}$ and $K_{B}$ respectively, then the correct option in the following is

1 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}$
2 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}=0$
3 $K_{E}>K_{B}$
4 $\mathrm{K}_{\mathrm{E}} \lt \mathrm{K}_{\mathrm{B}}$
Electromagnetic Wave

155601 The electric field (E) and magnetic field (B) of an electromagnetic wave passing through vacuum are given by
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$
Then the correct statement among the following is
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$

1 $\mathrm{E}_{0} \mathrm{k}=\mathrm{B}_{0} \omega$
2 $\mathrm{E}_{\mathrm{o}} \omega=\mathrm{B}_{0} \mathrm{k}$
3 $\mathrm{E}_{0} \mathrm{~B}_{\mathrm{o}}=\omega \mathrm{k}$
4 $\mathrm{E}_{\mathrm{o}} \mathrm{B}_{\mathrm{o}}=\frac{\omega}{\mathrm{k}}$
Electromagnetic Wave

155602 The ratio of amplitudes of electric and magnetic fields i.e. $\frac{E_{0}}{B_{0}}$ is equal to

1 $\sqrt{\mu_{0} \varepsilon_{0}}$
2 $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
3 $\mu_{0} \varepsilon_{0}$
4 $\frac{1}{\mu_{0} \varepsilon_{0}}$
Electromagnetic Wave

155599 Among the following, the incorrect Maxwells Electromagnetic equation is

1 $\int \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \vec{l}=\mu_{\mathrm{o}} \mathrm{i}_{\mathrm{c}}+\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$
2 $f \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
3 $\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$
4 $f \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
Electromagnetic Wave

155600 A plane electromagnetic wave of frequency 50 $\mathrm{MHz}$ travels in free space. If the average energy densities in the electric field and magnetic field are $K_{E}$ and $K_{B}$ respectively, then the correct option in the following is

1 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}$
2 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}=0$
3 $K_{E}>K_{B}$
4 $\mathrm{K}_{\mathrm{E}} \lt \mathrm{K}_{\mathrm{B}}$
Electromagnetic Wave

155601 The electric field (E) and magnetic field (B) of an electromagnetic wave passing through vacuum are given by
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$
Then the correct statement among the following is
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$

1 $\mathrm{E}_{0} \mathrm{k}=\mathrm{B}_{0} \omega$
2 $\mathrm{E}_{\mathrm{o}} \omega=\mathrm{B}_{0} \mathrm{k}$
3 $\mathrm{E}_{0} \mathrm{~B}_{\mathrm{o}}=\omega \mathrm{k}$
4 $\mathrm{E}_{\mathrm{o}} \mathrm{B}_{\mathrm{o}}=\frac{\omega}{\mathrm{k}}$
Electromagnetic Wave

155602 The ratio of amplitudes of electric and magnetic fields i.e. $\frac{E_{0}}{B_{0}}$ is equal to

1 $\sqrt{\mu_{0} \varepsilon_{0}}$
2 $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
3 $\mu_{0} \varepsilon_{0}$
4 $\frac{1}{\mu_{0} \varepsilon_{0}}$
Electromagnetic Wave

155599 Among the following, the incorrect Maxwells Electromagnetic equation is

1 $\int \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \vec{l}=\mu_{\mathrm{o}} \mathrm{i}_{\mathrm{c}}+\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$
2 $f \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
3 $\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$
4 $f \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
Electromagnetic Wave

155600 A plane electromagnetic wave of frequency 50 $\mathrm{MHz}$ travels in free space. If the average energy densities in the electric field and magnetic field are $K_{E}$ and $K_{B}$ respectively, then the correct option in the following is

1 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}$
2 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}=0$
3 $K_{E}>K_{B}$
4 $\mathrm{K}_{\mathrm{E}} \lt \mathrm{K}_{\mathrm{B}}$
Electromagnetic Wave

155601 The electric field (E) and magnetic field (B) of an electromagnetic wave passing through vacuum are given by
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$
Then the correct statement among the following is
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$

1 $\mathrm{E}_{0} \mathrm{k}=\mathrm{B}_{0} \omega$
2 $\mathrm{E}_{\mathrm{o}} \omega=\mathrm{B}_{0} \mathrm{k}$
3 $\mathrm{E}_{0} \mathrm{~B}_{\mathrm{o}}=\omega \mathrm{k}$
4 $\mathrm{E}_{\mathrm{o}} \mathrm{B}_{\mathrm{o}}=\frac{\omega}{\mathrm{k}}$
Electromagnetic Wave

155602 The ratio of amplitudes of electric and magnetic fields i.e. $\frac{E_{0}}{B_{0}}$ is equal to

1 $\sqrt{\mu_{0} \varepsilon_{0}}$
2 $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
3 $\mu_{0} \varepsilon_{0}$
4 $\frac{1}{\mu_{0} \varepsilon_{0}}$
Electromagnetic Wave

155599 Among the following, the incorrect Maxwells Electromagnetic equation is

1 $\int \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \vec{l}=\mu_{\mathrm{o}} \mathrm{i}_{\mathrm{c}}+\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\mathrm{d} \phi_{\mathrm{E}}}{\mathrm{dt}}$
2 $f \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
3 $\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{dt}}$
4 $f \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{\mathrm{o}}}$
Electromagnetic Wave

155600 A plane electromagnetic wave of frequency 50 $\mathrm{MHz}$ travels in free space. If the average energy densities in the electric field and magnetic field are $K_{E}$ and $K_{B}$ respectively, then the correct option in the following is

1 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}$
2 $\mathrm{K}_{\mathrm{E}}=\mathrm{K}_{\mathrm{B}}=0$
3 $K_{E}>K_{B}$
4 $\mathrm{K}_{\mathrm{E}} \lt \mathrm{K}_{\mathrm{B}}$
Electromagnetic Wave

155601 The electric field (E) and magnetic field (B) of an electromagnetic wave passing through vacuum are given by
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$
Then the correct statement among the following is
$E=E_{0} \sin (k x-\omega t)$
$B=B_{0} \sin (k x-\omega t)$

1 $\mathrm{E}_{0} \mathrm{k}=\mathrm{B}_{0} \omega$
2 $\mathrm{E}_{\mathrm{o}} \omega=\mathrm{B}_{0} \mathrm{k}$
3 $\mathrm{E}_{0} \mathrm{~B}_{\mathrm{o}}=\omega \mathrm{k}$
4 $\mathrm{E}_{\mathrm{o}} \mathrm{B}_{\mathrm{o}}=\frac{\omega}{\mathrm{k}}$
Electromagnetic Wave

155602 The ratio of amplitudes of electric and magnetic fields i.e. $\frac{E_{0}}{B_{0}}$ is equal to

1 $\sqrt{\mu_{0} \varepsilon_{0}}$
2 $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
3 $\mu_{0} \varepsilon_{0}$
4 $\frac{1}{\mu_{0} \varepsilon_{0}}$