02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155272 In a series $L C R$ circuit, if the applied voltage $V$ and the current in the circuit $I$ at any instant $t$ are given as $\mathrm{V}=\mathrm{V}_{\mathbf{0}} \sin \omega \mathrm{t}$
$I=I_{0} \sin (\omega t-\phi)$

1 $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
2 $\omega \mathrm{L}>\frac{1}{\omega \mathrm{C}}$
3 $\omega \mathrm{L} \lt \frac{1}{\omega \mathrm{C}}$
4 None of these
Alternating Current

155273 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=5 \mu F$ and $R$ $=160 \Omega$

1 $\frac{100}{2 \pi}$
2 $\frac{4000}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155274 In a A.C. circuit the potential difference and current are represented respectively by
$V=100 \sin (100 t) \text { volt, }$
$I=100 \sin (100 t+\pi / 3)$ milliamperes.
The power in the circuit is

1 2.5 watt
2 5 watt
3 10 watt
4 104 watt
Alternating Current

155275 In an experiment, $200 \mathrm{~V}$ A.C. is applied at the ends of an LCR circuit. The circuit consists of an inductive reactance $\left(X_{L}\right)=50 \Omega$, capacitive reactance $\left(X_{C}\right)=50 \Omega$ and ohmic resistance $(R)$ $=10 \Omega$. The impedance of the circuit is

1 $10 \Omega$
2 $20 \Omega$
3 $30 \Omega$
4 $40 \Omega$
Alternating Current

155272 In a series $L C R$ circuit, if the applied voltage $V$ and the current in the circuit $I$ at any instant $t$ are given as $\mathrm{V}=\mathrm{V}_{\mathbf{0}} \sin \omega \mathrm{t}$
$I=I_{0} \sin (\omega t-\phi)$

1 $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
2 $\omega \mathrm{L}>\frac{1}{\omega \mathrm{C}}$
3 $\omega \mathrm{L} \lt \frac{1}{\omega \mathrm{C}}$
4 None of these
Alternating Current

155273 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=5 \mu F$ and $R$ $=160 \Omega$

1 $\frac{100}{2 \pi}$
2 $\frac{4000}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155274 In a A.C. circuit the potential difference and current are represented respectively by
$V=100 \sin (100 t) \text { volt, }$
$I=100 \sin (100 t+\pi / 3)$ milliamperes.
The power in the circuit is

1 2.5 watt
2 5 watt
3 10 watt
4 104 watt
Alternating Current

155275 In an experiment, $200 \mathrm{~V}$ A.C. is applied at the ends of an LCR circuit. The circuit consists of an inductive reactance $\left(X_{L}\right)=50 \Omega$, capacitive reactance $\left(X_{C}\right)=50 \Omega$ and ohmic resistance $(R)$ $=10 \Omega$. The impedance of the circuit is

1 $10 \Omega$
2 $20 \Omega$
3 $30 \Omega$
4 $40 \Omega$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155272 In a series $L C R$ circuit, if the applied voltage $V$ and the current in the circuit $I$ at any instant $t$ are given as $\mathrm{V}=\mathrm{V}_{\mathbf{0}} \sin \omega \mathrm{t}$
$I=I_{0} \sin (\omega t-\phi)$

1 $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
2 $\omega \mathrm{L}>\frac{1}{\omega \mathrm{C}}$
3 $\omega \mathrm{L} \lt \frac{1}{\omega \mathrm{C}}$
4 None of these
Alternating Current

155273 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=5 \mu F$ and $R$ $=160 \Omega$

1 $\frac{100}{2 \pi}$
2 $\frac{4000}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155274 In a A.C. circuit the potential difference and current are represented respectively by
$V=100 \sin (100 t) \text { volt, }$
$I=100 \sin (100 t+\pi / 3)$ milliamperes.
The power in the circuit is

1 2.5 watt
2 5 watt
3 10 watt
4 104 watt
Alternating Current

155275 In an experiment, $200 \mathrm{~V}$ A.C. is applied at the ends of an LCR circuit. The circuit consists of an inductive reactance $\left(X_{L}\right)=50 \Omega$, capacitive reactance $\left(X_{C}\right)=50 \Omega$ and ohmic resistance $(R)$ $=10 \Omega$. The impedance of the circuit is

1 $10 \Omega$
2 $20 \Omega$
3 $30 \Omega$
4 $40 \Omega$
Alternating Current

155272 In a series $L C R$ circuit, if the applied voltage $V$ and the current in the circuit $I$ at any instant $t$ are given as $\mathrm{V}=\mathrm{V}_{\mathbf{0}} \sin \omega \mathrm{t}$
$I=I_{0} \sin (\omega t-\phi)$

1 $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
2 $\omega \mathrm{L}>\frac{1}{\omega \mathrm{C}}$
3 $\omega \mathrm{L} \lt \frac{1}{\omega \mathrm{C}}$
4 None of these
Alternating Current

155273 The resonance frequency of a series LCR circuit containing $L=12.5 \mathrm{mH}, C=5 \mu F$ and $R$ $=160 \Omega$

1 $\frac{100}{2 \pi}$
2 $\frac{4000}{2 \pi}$
3 $\frac{2 \pi}{300}$
4 $\frac{2 \pi}{600}$
Alternating Current

155274 In a A.C. circuit the potential difference and current are represented respectively by
$V=100 \sin (100 t) \text { volt, }$
$I=100 \sin (100 t+\pi / 3)$ milliamperes.
The power in the circuit is

1 2.5 watt
2 5 watt
3 10 watt
4 104 watt
Alternating Current

155275 In an experiment, $200 \mathrm{~V}$ A.C. is applied at the ends of an LCR circuit. The circuit consists of an inductive reactance $\left(X_{L}\right)=50 \Omega$, capacitive reactance $\left(X_{C}\right)=50 \Omega$ and ohmic resistance $(R)$ $=10 \Omega$. The impedance of the circuit is

1 $10 \Omega$
2 $20 \Omega$
3 $30 \Omega$
4 $40 \Omega$