02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155215 An L-C-R a series circuit containing a resistance $R=120 \Omega$ has angular resonant frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltage across resistance and inductance are $60 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The values of $L$ and C are-

1 $0.2 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
2 $0.2 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
3 $0.4 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
4 $0.4 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
Alternating Current

155216 In L-C-R circuit, $f=\frac{50}{\pi} \mathrm{Hz}, \mathrm{V}=50 \mathrm{~V}, \mathrm{R}=300 \Omega$.
If $L=1 \mathrm{H}$ and $\mathrm{C}=20 \mu \mathrm{C}$, then the voltage across capacitor is-

1 $50 \mathrm{~V}$
2 $20 \mathrm{~V}$
3 zero
4 $30 \mathrm{~V}$
Alternating Current

155217 For an L-R circuit, the inductive reactance is equal to the resistance $R$ of the circuit. An emf $E=E_{0} \cos (\omega t)$ is applied to the circuit. Then, the power consumed in the circuit is-

1 $\frac{E_{0}}{R}$
2 $\frac{E_{0}^{2}}{4 R}$
3 $\frac{4 R}{E_{0}}$
4 $\frac{\mathrm{R}}{\mathrm{E}_{0}}$
Alternating Current

155220 An LCR series circuit, connected to a source E, is at resonance. Then,

1 the voltage across $\mathrm{R}$ is zero
2 the voltage across $\mathrm{R}$ equals applied voltage
3 the voltage across $\mathrm{C}$ is zero
4 the voltage across L equals applied voltage
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155215 An L-C-R a series circuit containing a resistance $R=120 \Omega$ has angular resonant frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltage across resistance and inductance are $60 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The values of $L$ and C are-

1 $0.2 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
2 $0.2 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
3 $0.4 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
4 $0.4 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
Alternating Current

155216 In L-C-R circuit, $f=\frac{50}{\pi} \mathrm{Hz}, \mathrm{V}=50 \mathrm{~V}, \mathrm{R}=300 \Omega$.
If $L=1 \mathrm{H}$ and $\mathrm{C}=20 \mu \mathrm{C}$, then the voltage across capacitor is-

1 $50 \mathrm{~V}$
2 $20 \mathrm{~V}$
3 zero
4 $30 \mathrm{~V}$
Alternating Current

155217 For an L-R circuit, the inductive reactance is equal to the resistance $R$ of the circuit. An emf $E=E_{0} \cos (\omega t)$ is applied to the circuit. Then, the power consumed in the circuit is-

1 $\frac{E_{0}}{R}$
2 $\frac{E_{0}^{2}}{4 R}$
3 $\frac{4 R}{E_{0}}$
4 $\frac{\mathrm{R}}{\mathrm{E}_{0}}$
Alternating Current

155220 An LCR series circuit, connected to a source E, is at resonance. Then,

1 the voltage across $\mathrm{R}$ is zero
2 the voltage across $\mathrm{R}$ equals applied voltage
3 the voltage across $\mathrm{C}$ is zero
4 the voltage across L equals applied voltage
Alternating Current

155215 An L-C-R a series circuit containing a resistance $R=120 \Omega$ has angular resonant frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltage across resistance and inductance are $60 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The values of $L$ and C are-

1 $0.2 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
2 $0.2 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
3 $0.4 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
4 $0.4 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
Alternating Current

155216 In L-C-R circuit, $f=\frac{50}{\pi} \mathrm{Hz}, \mathrm{V}=50 \mathrm{~V}, \mathrm{R}=300 \Omega$.
If $L=1 \mathrm{H}$ and $\mathrm{C}=20 \mu \mathrm{C}$, then the voltage across capacitor is-

1 $50 \mathrm{~V}$
2 $20 \mathrm{~V}$
3 zero
4 $30 \mathrm{~V}$
Alternating Current

155217 For an L-R circuit, the inductive reactance is equal to the resistance $R$ of the circuit. An emf $E=E_{0} \cos (\omega t)$ is applied to the circuit. Then, the power consumed in the circuit is-

1 $\frac{E_{0}}{R}$
2 $\frac{E_{0}^{2}}{4 R}$
3 $\frac{4 R}{E_{0}}$
4 $\frac{\mathrm{R}}{\mathrm{E}_{0}}$
Alternating Current

155220 An LCR series circuit, connected to a source E, is at resonance. Then,

1 the voltage across $\mathrm{R}$ is zero
2 the voltage across $\mathrm{R}$ equals applied voltage
3 the voltage across $\mathrm{C}$ is zero
4 the voltage across L equals applied voltage
Alternating Current

155215 An L-C-R a series circuit containing a resistance $R=120 \Omega$ has angular resonant frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltage across resistance and inductance are $60 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The values of $L$ and C are-

1 $0.2 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
2 $0.2 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
3 $0.4 \mathrm{mH}, \frac{1}{32} \mu \mathrm{F}$
4 $0.4 \mathrm{mH}, \frac{1}{16} \mu \mathrm{F}$
Alternating Current

155216 In L-C-R circuit, $f=\frac{50}{\pi} \mathrm{Hz}, \mathrm{V}=50 \mathrm{~V}, \mathrm{R}=300 \Omega$.
If $L=1 \mathrm{H}$ and $\mathrm{C}=20 \mu \mathrm{C}$, then the voltage across capacitor is-

1 $50 \mathrm{~V}$
2 $20 \mathrm{~V}$
3 zero
4 $30 \mathrm{~V}$
Alternating Current

155217 For an L-R circuit, the inductive reactance is equal to the resistance $R$ of the circuit. An emf $E=E_{0} \cos (\omega t)$ is applied to the circuit. Then, the power consumed in the circuit is-

1 $\frac{E_{0}}{R}$
2 $\frac{E_{0}^{2}}{4 R}$
3 $\frac{4 R}{E_{0}}$
4 $\frac{\mathrm{R}}{\mathrm{E}_{0}}$
Alternating Current

155220 An LCR series circuit, connected to a source E, is at resonance. Then,

1 the voltage across $\mathrm{R}$ is zero
2 the voltage across $\mathrm{R}$ equals applied voltage
3 the voltage across $\mathrm{C}$ is zero
4 the voltage across L equals applied voltage