02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155208 A transformer of efficiency $90 \%$ draws an input power of $4 \mathrm{~kW}$. An electrical appliance connected across the secondary draws a current of $6 \mathrm{~A}$. The impedance of the device is

1 $60 \Omega$
2 $50 \Omega$
3 $80 \Omega$
4 $100 \Omega$
5 $120 \Omega$
Alternating Current

155209 The impedance of a $R-C$ circuit is $Z_{1}$ for frequency $f$ and $Z_{2}$ for frequency $2 f$. Then, $\mathbf{Z}_{1} / \mathbf{Z}_{2}$ is

1 between 1 and 2
2 2
3 between $\frac{1}{2}$ and 1
4 $\frac{1}{2}$
5 4
Alternating Current

155210 For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

1 $2500 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
2 $2500 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \mathrm{~A}$
3 $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
4 $250 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
5 $25 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
Alternating Current

155211 A $200 \mathrm{~km}$ long telegraph wire has a capacitance of $0.014 \mu \mathrm{F} / \mathrm{km}$. If it carries an alternating current of $50 \times 10^{3} \mathrm{~Hz}$, what should be the value of an inductance required to be connected in series, so that impedance is minimum?

1 $0.48 \times 10^{-2} \mathrm{mH}$
2 $0.36 \times 10^{-2} \mathrm{mH}$
3 $0.52 \times 10^{-2} \mathrm{mH}$
4 $0.49 \times 10^{-2} \mathrm{mH}$
Alternating Current

155212 In the circuit shown below what will be the readings of the voltmeter and ammeter?
(Total impedance of circuit $Z=100 \Omega$ )

1 $200 \mathrm{~V}, 1 \mathrm{~A}$
2 $800 \mathrm{~V}, 2 \mathrm{~A}$
3 $100 \mathrm{~V}, 2 \mathrm{~A}$
4 $220 \mathrm{~V}, 2.2 \mathrm{~A}$
Alternating Current

155208 A transformer of efficiency $90 \%$ draws an input power of $4 \mathrm{~kW}$. An electrical appliance connected across the secondary draws a current of $6 \mathrm{~A}$. The impedance of the device is

1 $60 \Omega$
2 $50 \Omega$
3 $80 \Omega$
4 $100 \Omega$
5 $120 \Omega$
Alternating Current

155209 The impedance of a $R-C$ circuit is $Z_{1}$ for frequency $f$ and $Z_{2}$ for frequency $2 f$. Then, $\mathbf{Z}_{1} / \mathbf{Z}_{2}$ is

1 between 1 and 2
2 2
3 between $\frac{1}{2}$ and 1
4 $\frac{1}{2}$
5 4
Alternating Current

155210 For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

1 $2500 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
2 $2500 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \mathrm{~A}$
3 $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
4 $250 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
5 $25 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
Alternating Current

155211 A $200 \mathrm{~km}$ long telegraph wire has a capacitance of $0.014 \mu \mathrm{F} / \mathrm{km}$. If it carries an alternating current of $50 \times 10^{3} \mathrm{~Hz}$, what should be the value of an inductance required to be connected in series, so that impedance is minimum?

1 $0.48 \times 10^{-2} \mathrm{mH}$
2 $0.36 \times 10^{-2} \mathrm{mH}$
3 $0.52 \times 10^{-2} \mathrm{mH}$
4 $0.49 \times 10^{-2} \mathrm{mH}$
Alternating Current

155212 In the circuit shown below what will be the readings of the voltmeter and ammeter?
(Total impedance of circuit $Z=100 \Omega$ )

1 $200 \mathrm{~V}, 1 \mathrm{~A}$
2 $800 \mathrm{~V}, 2 \mathrm{~A}$
3 $100 \mathrm{~V}, 2 \mathrm{~A}$
4 $220 \mathrm{~V}, 2.2 \mathrm{~A}$
Alternating Current

155208 A transformer of efficiency $90 \%$ draws an input power of $4 \mathrm{~kW}$. An electrical appliance connected across the secondary draws a current of $6 \mathrm{~A}$. The impedance of the device is

1 $60 \Omega$
2 $50 \Omega$
3 $80 \Omega$
4 $100 \Omega$
5 $120 \Omega$
Alternating Current

155209 The impedance of a $R-C$ circuit is $Z_{1}$ for frequency $f$ and $Z_{2}$ for frequency $2 f$. Then, $\mathbf{Z}_{1} / \mathbf{Z}_{2}$ is

1 between 1 and 2
2 2
3 between $\frac{1}{2}$ and 1
4 $\frac{1}{2}$
5 4
Alternating Current

155210 For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

1 $2500 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
2 $2500 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \mathrm{~A}$
3 $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
4 $250 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
5 $25 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
Alternating Current

155211 A $200 \mathrm{~km}$ long telegraph wire has a capacitance of $0.014 \mu \mathrm{F} / \mathrm{km}$. If it carries an alternating current of $50 \times 10^{3} \mathrm{~Hz}$, what should be the value of an inductance required to be connected in series, so that impedance is minimum?

1 $0.48 \times 10^{-2} \mathrm{mH}$
2 $0.36 \times 10^{-2} \mathrm{mH}$
3 $0.52 \times 10^{-2} \mathrm{mH}$
4 $0.49 \times 10^{-2} \mathrm{mH}$
Alternating Current

155212 In the circuit shown below what will be the readings of the voltmeter and ammeter?
(Total impedance of circuit $Z=100 \Omega$ )

1 $200 \mathrm{~V}, 1 \mathrm{~A}$
2 $800 \mathrm{~V}, 2 \mathrm{~A}$
3 $100 \mathrm{~V}, 2 \mathrm{~A}$
4 $220 \mathrm{~V}, 2.2 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155208 A transformer of efficiency $90 \%$ draws an input power of $4 \mathrm{~kW}$. An electrical appliance connected across the secondary draws a current of $6 \mathrm{~A}$. The impedance of the device is

1 $60 \Omega$
2 $50 \Omega$
3 $80 \Omega$
4 $100 \Omega$
5 $120 \Omega$
Alternating Current

155209 The impedance of a $R-C$ circuit is $Z_{1}$ for frequency $f$ and $Z_{2}$ for frequency $2 f$. Then, $\mathbf{Z}_{1} / \mathbf{Z}_{2}$ is

1 between 1 and 2
2 2
3 between $\frac{1}{2}$ and 1
4 $\frac{1}{2}$
5 4
Alternating Current

155210 For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

1 $2500 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
2 $2500 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \mathrm{~A}$
3 $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
4 $250 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
5 $25 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
Alternating Current

155211 A $200 \mathrm{~km}$ long telegraph wire has a capacitance of $0.014 \mu \mathrm{F} / \mathrm{km}$. If it carries an alternating current of $50 \times 10^{3} \mathrm{~Hz}$, what should be the value of an inductance required to be connected in series, so that impedance is minimum?

1 $0.48 \times 10^{-2} \mathrm{mH}$
2 $0.36 \times 10^{-2} \mathrm{mH}$
3 $0.52 \times 10^{-2} \mathrm{mH}$
4 $0.49 \times 10^{-2} \mathrm{mH}$
Alternating Current

155212 In the circuit shown below what will be the readings of the voltmeter and ammeter?
(Total impedance of circuit $Z=100 \Omega$ )

1 $200 \mathrm{~V}, 1 \mathrm{~A}$
2 $800 \mathrm{~V}, 2 \mathrm{~A}$
3 $100 \mathrm{~V}, 2 \mathrm{~A}$
4 $220 \mathrm{~V}, 2.2 \mathrm{~A}$
Alternating Current

155208 A transformer of efficiency $90 \%$ draws an input power of $4 \mathrm{~kW}$. An electrical appliance connected across the secondary draws a current of $6 \mathrm{~A}$. The impedance of the device is

1 $60 \Omega$
2 $50 \Omega$
3 $80 \Omega$
4 $100 \Omega$
5 $120 \Omega$
Alternating Current

155209 The impedance of a $R-C$ circuit is $Z_{1}$ for frequency $f$ and $Z_{2}$ for frequency $2 f$. Then, $\mathbf{Z}_{1} / \mathbf{Z}_{2}$ is

1 between 1 and 2
2 2
3 between $\frac{1}{2}$ and 1
4 $\frac{1}{2}$
5 4
Alternating Current

155210 For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency?

1 $2500 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
2 $2500 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \mathrm{~A}$
3 $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
4 $250 \mathrm{rad}^{-1} \mathrm{~s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
5 $25 \mathrm{rad}_{-} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$
Alternating Current

155211 A $200 \mathrm{~km}$ long telegraph wire has a capacitance of $0.014 \mu \mathrm{F} / \mathrm{km}$. If it carries an alternating current of $50 \times 10^{3} \mathrm{~Hz}$, what should be the value of an inductance required to be connected in series, so that impedance is minimum?

1 $0.48 \times 10^{-2} \mathrm{mH}$
2 $0.36 \times 10^{-2} \mathrm{mH}$
3 $0.52 \times 10^{-2} \mathrm{mH}$
4 $0.49 \times 10^{-2} \mathrm{mH}$
Alternating Current

155212 In the circuit shown below what will be the readings of the voltmeter and ammeter?
(Total impedance of circuit $Z=100 \Omega$ )

1 $200 \mathrm{~V}, 1 \mathrm{~A}$
2 $800 \mathrm{~V}, 2 \mathrm{~A}$
3 $100 \mathrm{~V}, 2 \mathrm{~A}$
4 $220 \mathrm{~V}, 2.2 \mathrm{~A}$