02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155199 A coil of inductance $8.4 \mathrm{mH}$ and resistance $6 \Omega$ is connected to $12 \mathrm{~V}$ battery. The current in the coil is $1 \mathrm{~A}$ at approximately the time

1 $500 \mathrm{~s}$
2 $20 \mathrm{~s}$
3 $35 \mathrm{~ms}$
4 $1 \mathrm{~ms}$
Alternating Current

155200 An AC source is connected in parallel with an L-C-R circuit as shown. Let $I_{S}, I_{L}, I_{C}$ and $I_{R}$ denote the currents through and $V_{S}, V_{L}, V_{C}$ and $V_{R}$ the voltages across the corresponding components. Then,

1 $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{R}}$
2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}$
3 $\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{R}}\right) \lt \mathrm{I}_{\mathrm{S}}$
4 $I_{L}, I_{C}$ may be greater than $I_{S}$
Alternating Current

155201 Figure represents two bulbs $B_{1}$ and $B_{2}$, resistor $R$ and an inductor $L$. When the switch $S$ is turned off

1 both $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ die out promptly
2 both $B_{1}$ and $B_{2}$ die out with some delay
3 $B_{1}$ dies out promptly but $B_{2}$ with some delay
4 $\mathrm{B}_{2}$ dies out promptly but $\mathrm{B}_{1}$ with some delay
Alternating Current

155202 What is the value of inductance $L$ for which the current is a maximum in a series LCR circuit with $C=10 \mu \mathrm{F}$ and $\omega=1000$ rad. $\mathrm{s}^{-1}$ ?

1 $100 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 Cannot be calculated unless $\mathrm{R}$ is known
4 $10 \mathrm{mH}$
Alternating Current

155199 A coil of inductance $8.4 \mathrm{mH}$ and resistance $6 \Omega$ is connected to $12 \mathrm{~V}$ battery. The current in the coil is $1 \mathrm{~A}$ at approximately the time

1 $500 \mathrm{~s}$
2 $20 \mathrm{~s}$
3 $35 \mathrm{~ms}$
4 $1 \mathrm{~ms}$
Alternating Current

155200 An AC source is connected in parallel with an L-C-R circuit as shown. Let $I_{S}, I_{L}, I_{C}$ and $I_{R}$ denote the currents through and $V_{S}, V_{L}, V_{C}$ and $V_{R}$ the voltages across the corresponding components. Then,

1 $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{R}}$
2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}$
3 $\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{R}}\right) \lt \mathrm{I}_{\mathrm{S}}$
4 $I_{L}, I_{C}$ may be greater than $I_{S}$
Alternating Current

155201 Figure represents two bulbs $B_{1}$ and $B_{2}$, resistor $R$ and an inductor $L$. When the switch $S$ is turned off

1 both $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ die out promptly
2 both $B_{1}$ and $B_{2}$ die out with some delay
3 $B_{1}$ dies out promptly but $B_{2}$ with some delay
4 $\mathrm{B}_{2}$ dies out promptly but $\mathrm{B}_{1}$ with some delay
Alternating Current

155202 What is the value of inductance $L$ for which the current is a maximum in a series LCR circuit with $C=10 \mu \mathrm{F}$ and $\omega=1000$ rad. $\mathrm{s}^{-1}$ ?

1 $100 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 Cannot be calculated unless $\mathrm{R}$ is known
4 $10 \mathrm{mH}$
Alternating Current

155199 A coil of inductance $8.4 \mathrm{mH}$ and resistance $6 \Omega$ is connected to $12 \mathrm{~V}$ battery. The current in the coil is $1 \mathrm{~A}$ at approximately the time

1 $500 \mathrm{~s}$
2 $20 \mathrm{~s}$
3 $35 \mathrm{~ms}$
4 $1 \mathrm{~ms}$
Alternating Current

155200 An AC source is connected in parallel with an L-C-R circuit as shown. Let $I_{S}, I_{L}, I_{C}$ and $I_{R}$ denote the currents through and $V_{S}, V_{L}, V_{C}$ and $V_{R}$ the voltages across the corresponding components. Then,

1 $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{R}}$
2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}$
3 $\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{R}}\right) \lt \mathrm{I}_{\mathrm{S}}$
4 $I_{L}, I_{C}$ may be greater than $I_{S}$
Alternating Current

155201 Figure represents two bulbs $B_{1}$ and $B_{2}$, resistor $R$ and an inductor $L$. When the switch $S$ is turned off

1 both $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ die out promptly
2 both $B_{1}$ and $B_{2}$ die out with some delay
3 $B_{1}$ dies out promptly but $B_{2}$ with some delay
4 $\mathrm{B}_{2}$ dies out promptly but $\mathrm{B}_{1}$ with some delay
Alternating Current

155202 What is the value of inductance $L$ for which the current is a maximum in a series LCR circuit with $C=10 \mu \mathrm{F}$ and $\omega=1000$ rad. $\mathrm{s}^{-1}$ ?

1 $100 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 Cannot be calculated unless $\mathrm{R}$ is known
4 $10 \mathrm{mH}$
Alternating Current

155199 A coil of inductance $8.4 \mathrm{mH}$ and resistance $6 \Omega$ is connected to $12 \mathrm{~V}$ battery. The current in the coil is $1 \mathrm{~A}$ at approximately the time

1 $500 \mathrm{~s}$
2 $20 \mathrm{~s}$
3 $35 \mathrm{~ms}$
4 $1 \mathrm{~ms}$
Alternating Current

155200 An AC source is connected in parallel with an L-C-R circuit as shown. Let $I_{S}, I_{L}, I_{C}$ and $I_{R}$ denote the currents through and $V_{S}, V_{L}, V_{C}$ and $V_{R}$ the voltages across the corresponding components. Then,

1 $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{R}}$
2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{R}}$
3 $\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{R}}\right) \lt \mathrm{I}_{\mathrm{S}}$
4 $I_{L}, I_{C}$ may be greater than $I_{S}$
Alternating Current

155201 Figure represents two bulbs $B_{1}$ and $B_{2}$, resistor $R$ and an inductor $L$. When the switch $S$ is turned off

1 both $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ die out promptly
2 both $B_{1}$ and $B_{2}$ die out with some delay
3 $B_{1}$ dies out promptly but $B_{2}$ with some delay
4 $\mathrm{B}_{2}$ dies out promptly but $\mathrm{B}_{1}$ with some delay
Alternating Current

155202 What is the value of inductance $L$ for which the current is a maximum in a series LCR circuit with $C=10 \mu \mathrm{F}$ and $\omega=1000$ rad. $\mathrm{s}^{-1}$ ?

1 $100 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 Cannot be calculated unless $\mathrm{R}$ is known
4 $10 \mathrm{mH}$