02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155165 A resistance of $10 \Omega$ is joined to an inductance of $0.5 \mathrm{H}$ and a capacitance of $20.24 \times 10^{-6} \mathrm{~F}$ When the circuit is connected to mains of $200 \mathrm{~V}$ and 50 cycle per second, maximum current flows in the circuit. The value of current is

1 $10 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $50 \mathrm{~A}$
4 $0.5 \mathrm{~A}$
Alternating Current

155166 In the given L-C circuit, inductance is $80 \mathrm{mH}$ and capacitance is $20 \mu \mathrm{F}$. The maximum potential difference across the capacitor is 80 $\mathrm{V}$. The maximum current is

1 $200 \mathrm{~A}$
2 $40 \mathrm{~A}$
3 $800 \mathrm{~A}$
4 $100 \mathrm{~A}$
Alternating Current

155167 A series $L C R$ circuit with $R=43 \Omega$ and $L=0.5$ $H$ has a leading phase angle of $45^{\circ}$ at a frequency of $50 \mathrm{~Hz}$. The capacitance used in the circuit is.

1 $15.9 \mu \mathrm{F}$
2 $20.2 \mu \mathrm{F}$
3 $27.9 \mu \mathrm{F}$
4 $12.3 \mu \mathrm{F}$
Alternating Current

155171 In an LCR circuit inductance is $L$, resistance is $R$ and quality factor is $Q$ then find the capacitance of the circuit.

1 $\mathrm{L} /(\mathrm{RQ})^{2}$
2 $\mathrm{L} /(2 \mathrm{RQ})^{2}$
3 $2 \mathrm{~L} /(\mathrm{RQ})^{2}$
4 $3 \mathrm{~L} / /(\mathrm{RQ})^{2}$
Alternating Current

155165 A resistance of $10 \Omega$ is joined to an inductance of $0.5 \mathrm{H}$ and a capacitance of $20.24 \times 10^{-6} \mathrm{~F}$ When the circuit is connected to mains of $200 \mathrm{~V}$ and 50 cycle per second, maximum current flows in the circuit. The value of current is

1 $10 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $50 \mathrm{~A}$
4 $0.5 \mathrm{~A}$
Alternating Current

155166 In the given L-C circuit, inductance is $80 \mathrm{mH}$ and capacitance is $20 \mu \mathrm{F}$. The maximum potential difference across the capacitor is 80 $\mathrm{V}$. The maximum current is

1 $200 \mathrm{~A}$
2 $40 \mathrm{~A}$
3 $800 \mathrm{~A}$
4 $100 \mathrm{~A}$
Alternating Current

155167 A series $L C R$ circuit with $R=43 \Omega$ and $L=0.5$ $H$ has a leading phase angle of $45^{\circ}$ at a frequency of $50 \mathrm{~Hz}$. The capacitance used in the circuit is.

1 $15.9 \mu \mathrm{F}$
2 $20.2 \mu \mathrm{F}$
3 $27.9 \mu \mathrm{F}$
4 $12.3 \mu \mathrm{F}$
Alternating Current

155171 In an LCR circuit inductance is $L$, resistance is $R$ and quality factor is $Q$ then find the capacitance of the circuit.

1 $\mathrm{L} /(\mathrm{RQ})^{2}$
2 $\mathrm{L} /(2 \mathrm{RQ})^{2}$
3 $2 \mathrm{~L} /(\mathrm{RQ})^{2}$
4 $3 \mathrm{~L} / /(\mathrm{RQ})^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155165 A resistance of $10 \Omega$ is joined to an inductance of $0.5 \mathrm{H}$ and a capacitance of $20.24 \times 10^{-6} \mathrm{~F}$ When the circuit is connected to mains of $200 \mathrm{~V}$ and 50 cycle per second, maximum current flows in the circuit. The value of current is

1 $10 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $50 \mathrm{~A}$
4 $0.5 \mathrm{~A}$
Alternating Current

155166 In the given L-C circuit, inductance is $80 \mathrm{mH}$ and capacitance is $20 \mu \mathrm{F}$. The maximum potential difference across the capacitor is 80 $\mathrm{V}$. The maximum current is

1 $200 \mathrm{~A}$
2 $40 \mathrm{~A}$
3 $800 \mathrm{~A}$
4 $100 \mathrm{~A}$
Alternating Current

155167 A series $L C R$ circuit with $R=43 \Omega$ and $L=0.5$ $H$ has a leading phase angle of $45^{\circ}$ at a frequency of $50 \mathrm{~Hz}$. The capacitance used in the circuit is.

1 $15.9 \mu \mathrm{F}$
2 $20.2 \mu \mathrm{F}$
3 $27.9 \mu \mathrm{F}$
4 $12.3 \mu \mathrm{F}$
Alternating Current

155171 In an LCR circuit inductance is $L$, resistance is $R$ and quality factor is $Q$ then find the capacitance of the circuit.

1 $\mathrm{L} /(\mathrm{RQ})^{2}$
2 $\mathrm{L} /(2 \mathrm{RQ})^{2}$
3 $2 \mathrm{~L} /(\mathrm{RQ})^{2}$
4 $3 \mathrm{~L} / /(\mathrm{RQ})^{2}$
Alternating Current

155165 A resistance of $10 \Omega$ is joined to an inductance of $0.5 \mathrm{H}$ and a capacitance of $20.24 \times 10^{-6} \mathrm{~F}$ When the circuit is connected to mains of $200 \mathrm{~V}$ and 50 cycle per second, maximum current flows in the circuit. The value of current is

1 $10 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $50 \mathrm{~A}$
4 $0.5 \mathrm{~A}$
Alternating Current

155166 In the given L-C circuit, inductance is $80 \mathrm{mH}$ and capacitance is $20 \mu \mathrm{F}$. The maximum potential difference across the capacitor is 80 $\mathrm{V}$. The maximum current is

1 $200 \mathrm{~A}$
2 $40 \mathrm{~A}$
3 $800 \mathrm{~A}$
4 $100 \mathrm{~A}$
Alternating Current

155167 A series $L C R$ circuit with $R=43 \Omega$ and $L=0.5$ $H$ has a leading phase angle of $45^{\circ}$ at a frequency of $50 \mathrm{~Hz}$. The capacitance used in the circuit is.

1 $15.9 \mu \mathrm{F}$
2 $20.2 \mu \mathrm{F}$
3 $27.9 \mu \mathrm{F}$
4 $12.3 \mu \mathrm{F}$
Alternating Current

155171 In an LCR circuit inductance is $L$, resistance is $R$ and quality factor is $Q$ then find the capacitance of the circuit.

1 $\mathrm{L} /(\mathrm{RQ})^{2}$
2 $\mathrm{L} /(2 \mathrm{RQ})^{2}$
3 $2 \mathrm{~L} /(\mathrm{RQ})^{2}$
4 $3 \mathrm{~L} / /(\mathrm{RQ})^{2}$