02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)