02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155145 A circuit when connected to an AC source of 12 $\mathrm{V}$ gives a current of $0.2 \mathrm{~A}$. The same circuit when connected to a DC source of $12 \mathrm{~V}$, gives a current of $0.4 \mathrm{~A}$. The circuit is

1 series LR
2 series RC
3 series LC
4 series LCR
Alternating Current

155146 An alternating emf source of $100 \mathrm{~V}$ at $50 \mathrm{~Hz}$ is connected to a circuit of resistance $(10 \pi) \Omega$ and inductance of $0.173 \mathrm{H}$. What is the phase difference between current and emf

1 $0^{0}$
2 $45^{0}$
3 $30^{\circ}$
4 $60^{\circ}$
Alternating Current

155147 The readings of ammeter and voltmeter in the following circuit are respectively :

1 $1.2 \mathrm{~A}, 120 \mathrm{~V}$
2 $1.5 \mathrm{~A}, 100 \mathrm{~V}$
3 $2.7 \mathrm{~A}, 220 \mathrm{~V}$
4 $2.2 \mathrm{~A}, 220 \mathrm{~V}$
Alternating Current

155148 For a series RLC circuit $R=X_{L}=2 X_{C}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(2)$
2 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(1 / 2)$
3 $\sqrt{5} \mathrm{X}_{\mathrm{C}}, \tan ^{-1}(2)$
4 $\sqrt{5} \mathrm{R}, \tan ^{-1}(1 / 2)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155145 A circuit when connected to an AC source of 12 $\mathrm{V}$ gives a current of $0.2 \mathrm{~A}$. The same circuit when connected to a DC source of $12 \mathrm{~V}$, gives a current of $0.4 \mathrm{~A}$. The circuit is

1 series LR
2 series RC
3 series LC
4 series LCR
Alternating Current

155146 An alternating emf source of $100 \mathrm{~V}$ at $50 \mathrm{~Hz}$ is connected to a circuit of resistance $(10 \pi) \Omega$ and inductance of $0.173 \mathrm{H}$. What is the phase difference between current and emf

1 $0^{0}$
2 $45^{0}$
3 $30^{\circ}$
4 $60^{\circ}$
Alternating Current

155147 The readings of ammeter and voltmeter in the following circuit are respectively :

1 $1.2 \mathrm{~A}, 120 \mathrm{~V}$
2 $1.5 \mathrm{~A}, 100 \mathrm{~V}$
3 $2.7 \mathrm{~A}, 220 \mathrm{~V}$
4 $2.2 \mathrm{~A}, 220 \mathrm{~V}$
Alternating Current

155148 For a series RLC circuit $R=X_{L}=2 X_{C}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(2)$
2 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(1 / 2)$
3 $\sqrt{5} \mathrm{X}_{\mathrm{C}}, \tan ^{-1}(2)$
4 $\sqrt{5} \mathrm{R}, \tan ^{-1}(1 / 2)$
Alternating Current

155145 A circuit when connected to an AC source of 12 $\mathrm{V}$ gives a current of $0.2 \mathrm{~A}$. The same circuit when connected to a DC source of $12 \mathrm{~V}$, gives a current of $0.4 \mathrm{~A}$. The circuit is

1 series LR
2 series RC
3 series LC
4 series LCR
Alternating Current

155146 An alternating emf source of $100 \mathrm{~V}$ at $50 \mathrm{~Hz}$ is connected to a circuit of resistance $(10 \pi) \Omega$ and inductance of $0.173 \mathrm{H}$. What is the phase difference between current and emf

1 $0^{0}$
2 $45^{0}$
3 $30^{\circ}$
4 $60^{\circ}$
Alternating Current

155147 The readings of ammeter and voltmeter in the following circuit are respectively :

1 $1.2 \mathrm{~A}, 120 \mathrm{~V}$
2 $1.5 \mathrm{~A}, 100 \mathrm{~V}$
3 $2.7 \mathrm{~A}, 220 \mathrm{~V}$
4 $2.2 \mathrm{~A}, 220 \mathrm{~V}$
Alternating Current

155148 For a series RLC circuit $R=X_{L}=2 X_{C}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(2)$
2 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(1 / 2)$
3 $\sqrt{5} \mathrm{X}_{\mathrm{C}}, \tan ^{-1}(2)$
4 $\sqrt{5} \mathrm{R}, \tan ^{-1}(1 / 2)$
Alternating Current

155145 A circuit when connected to an AC source of 12 $\mathrm{V}$ gives a current of $0.2 \mathrm{~A}$. The same circuit when connected to a DC source of $12 \mathrm{~V}$, gives a current of $0.4 \mathrm{~A}$. The circuit is

1 series LR
2 series RC
3 series LC
4 series LCR
Alternating Current

155146 An alternating emf source of $100 \mathrm{~V}$ at $50 \mathrm{~Hz}$ is connected to a circuit of resistance $(10 \pi) \Omega$ and inductance of $0.173 \mathrm{H}$. What is the phase difference between current and emf

1 $0^{0}$
2 $45^{0}$
3 $30^{\circ}$
4 $60^{\circ}$
Alternating Current

155147 The readings of ammeter and voltmeter in the following circuit are respectively :

1 $1.2 \mathrm{~A}, 120 \mathrm{~V}$
2 $1.5 \mathrm{~A}, 100 \mathrm{~V}$
3 $2.7 \mathrm{~A}, 220 \mathrm{~V}$
4 $2.2 \mathrm{~A}, 220 \mathrm{~V}$
Alternating Current

155148 For a series RLC circuit $R=X_{L}=2 X_{C}$. The impedance of the circuit and phase difference between $V$ and $I$ respectively will be

1 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(2)$
2 $\frac{\sqrt{5} \mathrm{R}}{2}, \tan ^{-1}(1 / 2)$
3 $\sqrt{5} \mathrm{X}_{\mathrm{C}}, \tan ^{-1}(2)$
4 $\sqrt{5} \mathrm{R}, \tan ^{-1}(1 / 2)$