02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155111 The $Q$ - value of a series $L C R$ circuit with $L=$ $2 \mathrm{H}, \mathrm{C}=32 \mu \mathrm{F}, \mathrm{R}=\mathbf{2 0} \Omega$ is

1 12.5
2 25.0
3 50.0
4 125.0
Alternating Current

155112 An $L C R$ series circuit with $C=100 \mu F, L=970$ $\mathrm{mH}$ and $\mathrm{R}=4 \Omega$ is connected to an $\mathrm{AC}$ source of emf $E=(100) \sin (100 t)$ volts. Find the peak current.

1 $25 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $30 \mathrm{~A}$
Alternating Current

155113 An inductor of inductance $L$, a capacitor of capacitance $C$ and a resistor of resistance ' $R$ ' are connected in series to an A.C. source of potential difference ' $V$ ' volts as shown in figure.

Potential difference across $L, C$ and $R$ is $40 \mathrm{~V}$, $10 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The amplitude of current flowing through $\mathrm{L}-\mathrm{C}-\mathrm{R}$ series circuit is $10 \sqrt{2} \mathrm{~A}$. The impedance of the circuit is

1 $4 \sqrt{2} \Omega$
2 $5 \sqrt{2} \Omega$
3 $4 \Omega$
4 $5 \Omega$
Alternating Current

155114 A series L-C-R circuit containing 5.0 H inductor, $80 \mu \mathrm{F}$ capacitor and $40 \Omega$ resistor is connected to $230 \mathrm{~V}$ variable frequency $\mathrm{AC}$ source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be

1 $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
2 $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$
3 $46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
4 $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$
Alternating Current

155111 The $Q$ - value of a series $L C R$ circuit with $L=$ $2 \mathrm{H}, \mathrm{C}=32 \mu \mathrm{F}, \mathrm{R}=\mathbf{2 0} \Omega$ is

1 12.5
2 25.0
3 50.0
4 125.0
Alternating Current

155112 An $L C R$ series circuit with $C=100 \mu F, L=970$ $\mathrm{mH}$ and $\mathrm{R}=4 \Omega$ is connected to an $\mathrm{AC}$ source of emf $E=(100) \sin (100 t)$ volts. Find the peak current.

1 $25 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $30 \mathrm{~A}$
Alternating Current

155113 An inductor of inductance $L$, a capacitor of capacitance $C$ and a resistor of resistance ' $R$ ' are connected in series to an A.C. source of potential difference ' $V$ ' volts as shown in figure.

Potential difference across $L, C$ and $R$ is $40 \mathrm{~V}$, $10 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The amplitude of current flowing through $\mathrm{L}-\mathrm{C}-\mathrm{R}$ series circuit is $10 \sqrt{2} \mathrm{~A}$. The impedance of the circuit is

1 $4 \sqrt{2} \Omega$
2 $5 \sqrt{2} \Omega$
3 $4 \Omega$
4 $5 \Omega$
Alternating Current

155114 A series L-C-R circuit containing 5.0 H inductor, $80 \mu \mathrm{F}$ capacitor and $40 \Omega$ resistor is connected to $230 \mathrm{~V}$ variable frequency $\mathrm{AC}$ source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be

1 $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
2 $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$
3 $46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
4 $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$
Alternating Current

155111 The $Q$ - value of a series $L C R$ circuit with $L=$ $2 \mathrm{H}, \mathrm{C}=32 \mu \mathrm{F}, \mathrm{R}=\mathbf{2 0} \Omega$ is

1 12.5
2 25.0
3 50.0
4 125.0
Alternating Current

155112 An $L C R$ series circuit with $C=100 \mu F, L=970$ $\mathrm{mH}$ and $\mathrm{R}=4 \Omega$ is connected to an $\mathrm{AC}$ source of emf $E=(100) \sin (100 t)$ volts. Find the peak current.

1 $25 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $30 \mathrm{~A}$
Alternating Current

155113 An inductor of inductance $L$, a capacitor of capacitance $C$ and a resistor of resistance ' $R$ ' are connected in series to an A.C. source of potential difference ' $V$ ' volts as shown in figure.

Potential difference across $L, C$ and $R$ is $40 \mathrm{~V}$, $10 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The amplitude of current flowing through $\mathrm{L}-\mathrm{C}-\mathrm{R}$ series circuit is $10 \sqrt{2} \mathrm{~A}$. The impedance of the circuit is

1 $4 \sqrt{2} \Omega$
2 $5 \sqrt{2} \Omega$
3 $4 \Omega$
4 $5 \Omega$
Alternating Current

155114 A series L-C-R circuit containing 5.0 H inductor, $80 \mu \mathrm{F}$ capacitor and $40 \Omega$ resistor is connected to $230 \mathrm{~V}$ variable frequency $\mathrm{AC}$ source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be

1 $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
2 $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$
3 $46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
4 $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155111 The $Q$ - value of a series $L C R$ circuit with $L=$ $2 \mathrm{H}, \mathrm{C}=32 \mu \mathrm{F}, \mathrm{R}=\mathbf{2 0} \Omega$ is

1 12.5
2 25.0
3 50.0
4 125.0
Alternating Current

155112 An $L C R$ series circuit with $C=100 \mu F, L=970$ $\mathrm{mH}$ and $\mathrm{R}=4 \Omega$ is connected to an $\mathrm{AC}$ source of emf $E=(100) \sin (100 t)$ volts. Find the peak current.

1 $25 \mathrm{~A}$
2 $20 \mathrm{~A}$
3 $15 \mathrm{~A}$
4 $30 \mathrm{~A}$
Alternating Current

155113 An inductor of inductance $L$, a capacitor of capacitance $C$ and a resistor of resistance ' $R$ ' are connected in series to an A.C. source of potential difference ' $V$ ' volts as shown in figure.

Potential difference across $L, C$ and $R$ is $40 \mathrm{~V}$, $10 \mathrm{~V}$ and $40 \mathrm{~V}$, respectively. The amplitude of current flowing through $\mathrm{L}-\mathrm{C}-\mathrm{R}$ series circuit is $10 \sqrt{2} \mathrm{~A}$. The impedance of the circuit is

1 $4 \sqrt{2} \Omega$
2 $5 \sqrt{2} \Omega$
3 $4 \Omega$
4 $5 \Omega$
Alternating Current

155114 A series L-C-R circuit containing 5.0 H inductor, $80 \mu \mathrm{F}$ capacitor and $40 \Omega$ resistor is connected to $230 \mathrm{~V}$ variable frequency $\mathrm{AC}$ source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be

1 $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
2 $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$
3 $46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
4 $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$